A.QAQ

  • 题目大意:从给定的字符串中找出QAQ的个数,三个字母的位置可以不连续
  • 思路:暴力求解,先找到A的位置,往前扫,往后扫寻找Q的个数q1,q2,然
  • 后相乘得到q1*q2,这就是这个A能够找到的QAQ个数,依次累加即可
#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
string s;
cin>>s;
int len=s.length(),sum=0;
for(int i=0;i<len;++i) {
if(s[i]=='A') {
int num1,num2;
num1=num2=0;
for(int j=0;j<i;++j) if(s[j]=='Q') num1++;
for(int j=i+1;j<len;++j) if(s[j]=='Q') num2++;
if(num1&&num2) sum+=num1*num2;
}
}
cout<<sum<<endl;
return 0;
}

B. Ralph And His Magic Field

  • 题目大意:给一个\(n*m\)的格子,使得每一行与每一列都等于给定的k值,k取1或者-1
  • 我比较笨,没做出来,下来之后补题用达标发现规律
  • 最后的方案数为\(res = 2 ^{(n-1)*(m-1)}\)当\(n,m\)一个是奇数一个是偶数,且\(k==-1\)时直接输出0即可
  • 注意先计算\(2^{(n-1)}\)再计算\((2^{(n-1)})^{m-1}\),不然直接计算会使得中途的结果就不一样
  • 最终程序:
#include <iostream>
#include <stdio.h>
using namespace std;
typedef long long ll;
const ll mod = 1000000007;
ll n,m,k;
ll qpow(ll base, ll num) {
ll res=1;
while(num) {
if(num&1) res=((res%mod)*(base%mod))%mod;
num>>=1;
base=((base%mod)*(base%mod))%mod;
}
return res;
}
int main() {
scanf("%I64d %I64d %I64d",&n,&m,&k);
if(((n&1)!=(m&1))&&k==-1) {
printf("0\n");
return 0;
}
printf("%I64d\n", qpow(qpow(2,n-1),m-1));
return 0;
}
  • 打表程序
#include <iostream>
using namespace std;
int a[14][14];
int b[2]={-1,1};
int n,m,num,sum=0;
bool check() {
int temp;
for(int i=1; i<=n; ++i) {
temp=1;
for(int j=1; j<=m; ++j) {
temp*=a[i][j];
}
if(temp!=num) return false;
}
for(int i=1; i<=m; ++i) {
temp=1;
for(int j=1; j<=n; ++j) {
temp*=a[j][i];
}
if(temp!=num) return false;
}
return true;
}
void dfs(int x, int y) {
for(int i=0; i<=1; ++i) {
a[x][y]=b[i];
if(x<n&&y<m) dfs(x,y+1);
else if(x<n&&y==m) dfs(x+1,1);
else if(x==n&&y<m) dfs(x,y+1);
else if(x==n&&y==m) {
if(check()) sum++;
}
}
}
int main() {
while(cin>>n>>m>>num) {
sum=0;
dfs(1,1);
cout<<sum<<endl;
}
return 0;
}

C. Marco and GCD Sequence

  • 题目大意:给定已经求出的区间gcd,看是否存在序列满足求出的gcd
  • 思路:因为给定了gcd,那么可使最小的数要成为其他区间的gcd(插
  • 入),这是一定满足要求的解法。如果其他数不能被最小数整除,这
  • 说明给定gcd缺少了元素。
  • eg_1: 2 3 6 10
  • 其中3不能被2整除,说明给定gcd缺少了元素,添加1:1 2 3 6 10才可以
  • answer:1 (1) 2 (1) 3 (1) 6 (1) 10 gcd(ai,aj)=1;
  • eg_2:1 3 5 6 10 15 把最小数插入中间即可满足
  • answer:1 (1) 3 (1) 5 (1) 6 (1) 10 (1) 15 gcd(ai,aj)=1;
#include <iostream>
using namespace std;
int main() {
int n,ans[1005];
cin>>n;
for(int i=1;i<=n;++i) cin>>ans[i];
for(int i=1;i<=n;++i) {
if(ans[i]%ans[1]) {
cout<<"-1"<<endl;
return 0;
}
}
cout<<n+(n-1)<<endl;
for(int i=1;i<n;++i) cout<<ans[i]<<" "<<ans[1]<<" ";
cout<<ans[n]<<endl;
return 0;
}

codeforces #447 894A QAQ 894B Ralph And His Magic Field 894C Marco and GCD Sequence的更多相关文章

  1. Codeforces 894B - Ralph And His Magic Field

    894B - Ralph And His Magic Field 思路: 当k为1时,如果n和m奇偶性不同,那么没有答案. 可以证明,在其他情况下有答案,且答案为2^(n-1)*(m-1),因为前n- ...

  2. codeforces 894B - Ralph And His Magic Field - [数学题]

    题目链接:https://cn.vjudge.net/problem/CodeForces-894B Ralph has a magic field which is divided into n × ...

  3. Codeforces Round #447 (Div. 2) B. Ralph And His Magic Field【数论/组合数学】

    B. Ralph And His Magic Field time limit per test 1 second memory limit per test 256 megabytes input ...

  4. Codeforces Round #447 (Div. 2) B. Ralph And His Magic Field 数学

    题目链接 题意:给你三个数n,m,k;让你构造出一个nm的矩阵,矩阵元素只有两个值(1,-1),且满足每行每列的乘积为k,问你多少个矩阵. 解法:首先,如果n,m奇偶不同,且k=-1时,必然无解: 设 ...

  5. codeforces 894C - Marco and GCD Sequence - [有关gcd数学题]

    题目链接:https://cn.vjudge.net/problem/CodeForces-894C In a dream Marco met an elderly man with a pair o ...

  6. Codeforces 894.B Ralph And His Magic Field

    B. Ralph And His Magic Field time limit per test 1 second memory limit per test 256 megabytes input ...

  7. 【Codeforces Round #447 (Div. 2) B】Ralph And His Magic Field

    | [链接] 我是链接,点我呀:) [题意] 给你一个n*m矩阵,让你在里面填数字. 使得每一行的数字的乘积都为k; 且每一列的数字的乘积都为k; k只能为1或-1 [题解] 显然每个位置只能填1或- ...

  8. Codeforces Round #447 (Div. 2) C. Marco and GCD Sequence【构造/GCD】

    C. Marco and GCD Sequence time limit per test 1 second memory limit per test 256 megabytes input sta ...

  9. 【Codeforces Round #447 (Div. 2) C】Marco and GCD Sequence

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 把gcd(a[1..n])放在输入的n个数之间. [代码] /* 1.Shoud it use long long ? 2.Have ...

随机推荐

  1. Windows搭建wnmp

    1. 下载安装nginx: nginx官网下载地址:http://nginx.org/en/download.html 下载任一版本(我下载的是stable1.12.1版本)解压到D:\wnmp\ng ...

  2. 在XUnit中用Moq怎样模拟EntityFramework Core下的DbSet

    最近在做一个项目的单元测试时,遇到了些问题,解决后,觉得有必要记下来,并分享给需要的人,先简单说一下项目技术框架背景: asp.net core 2.0(for .net core)框架 用Entit ...

  3. CS231n 2017 学习笔记01——KNN(K-Nearest Neighbors)

    本博客内容来自 Stanford University CS231N 2017 Lecture 2 - Image Classification 课程官网:http://cs231n.stanford ...

  4. h5 动画页面

    伪元素上就不要做动画了,页面果然应该做一个测试一个啊   拿到设计稿一开始就先看看这个设计稿的布局,有一些是从页面顶部到底部都有效果的,这个时候就要考虑在 iPhone4 这样屏幕不够高的设备上如何保 ...

  5. Problem D: 来开个书店吧

    某出版社可出版图书和磁带.其中图书按照每页的价格乘以页数进行定价,磁带根据每10分钟的价格乘以磁带录音的分钟数进行定价.请定义Publicatioin.Book.Tape以及BookStore四个类. ...

  6. 初学者最易懂的git教程在这里!

    一.git简介: Linux创建了Linux,但是Linux的发展壮大是由世界各地的热心志愿者参与编写的?那么那么多份的代码是怎么合并的呢?之前是在2002年以前,世界各地的志愿者把源代码文件通过di ...

  7. Spring面试题目

    问题清单: 1. 什么是Spring框架?Spring框架有哪些主要模块? 2. 使用Spring框架有什么好处? 3. 什么是控制反转(IOC)?什么是依赖注入? 4. 请解释下Spring中的IO ...

  8. tomcat不编译webapps下的war包的解决办法

    1.首先看看tomcat是否能正常启动,如果启动tomcat一闪而过那么就使用dos命令启动tomcat看看报什么错 如果是端口占用的错误.使用netstat -ano命令查看占用端口的程序 然后用任 ...

  9. 二:熟悉 TCP/IP 协议

    一篇文章带你熟悉 TCP/IP 协议(网络协议篇二) 同样的,本文篇幅也比较长,先来一张思维导图,带大家过一遍. 一图看完本文 一. 计算机网络体系结构分层 计算机网络体系结构分层计算机网络体系结构分 ...

  10. 处理ASP.NET Core中的HTML5客户端路由回退

    在使用由Angular,React,Vue等应用程序框架构建的客户端应用程序时,您总是会处理HTML5客户端路由,它将完全在浏览器中处理到页面和组件的客户端路由.几乎完全在浏览器中... HTML5客 ...