版权申明:本文为博主窗户(Colin Cai)原创,欢迎转帖。如要转贴,必须注明原文网址

  http://www.cnblogs.com/Colin-Cai/p/7296163.html 

  作者:窗户

  QQ:6679072

  E-mail:6679072@qq.com

  要生成RSA的密钥,第一步就是要寻找质数,本节专讲如何寻找质数。

  

  我们的质数(又称素数)、合数一般是对正整数来讲,质数就是只有1和本身两个的正整数,合数至少有3个约数,而1既不是合数也不是质数。

  质数有无穷多个,这个早在古希腊时期就被证明了,使用反证法很容易证明:假设质数只有有限多,分别为a1.....an,则a1*a1....*an+1大于所有的质数,却不以任何质数为约数,推出矛盾,从而假设错误。

  

  在质数的分布上,有个定理:

  lim  ∏ (n)/(n/ln(n)) = 1

  n→∞

   其中∏ (n)是小与等于n的质数的个数。

  找质数的第一个门槛还是靠随机,上述公式,可以推导出质数的密度ρ (n)(因为∏ (n)并非连续函数,此处密度只是概率上的密度)为

  lim ρ (n)/(n/ln(n))‘ = 1

  n→∞

 (n/ln(n))' = (ln(n)-1)/ln2(n),

  从而

  

  lim ρ (n)/(1/ln(n)) = 1

   n→∞

  那么,在n附近寻找质数,大约平均每ln(n)次可以找到一个质数。

  涉及到密钥的生成,随机算法要小心了,用时间种子与伪随机算法一起当然是不安全的,最好以硬件随机为基础的随机数,这样无规律,难以从密钥生成机制直接下手破解。

  

  接下来就需要质数判定算法。

  最土的算法:判断p是不是质数,就从2开始,挨个整数判断到p-1,看看是否其中有p的约数,如果没有,就是质数。

  这个算法效率太低O(p),但输入的信息量是p的位数级别,所以此算法应为指数级算法。

  明显提高的算法:如果p是合数,那么必然有一个不为1的约数小于或等于sqrt(p),于是刚才从2挨个整数判断到p-1修整一下,只需要判断到sqrt(p)即可。

  这个算法效率比前面那个算法好太多了,可是依然是指数级算法,只是指数从线性下降到平方根级别。

  可是我们RSA这里的指数动辄几百个bits,甚至两千多个bits,此种算法一样不靠谱。虽然上述算法还可以继续优化,比如测试了一个整数不是p的约数,就尽量不要测试这个整数的整数倍,只是,算法依然很慢。实际上,的确存在多项式级别的确定质数判定算法,第一个这样的算法是AKS算法,2002年由印度人解决。但目前靠谱的算法都是如此的慢,我们需要基于概率的判定方法。

  前两节谈到了模乘群,对于质数p,所有的小于p的正整数在模乘下构成一个群,该群的阶为p-1,则p-1是所有小于p的正整数以p为模的模乘周期的整数倍,这就是著名的费马小定理:

  如果a和p互质,且p为质数,则ap-1%p=1

  费马小定理虽然没有给出一个质数的鉴定方法,但告诉了我们,如果右边等号不成立,则p一定是合数,而基于概率的判定方法一般都会以费马小定理作为基础零件。RSA中一般用Miller-Rabin算法。

  Miller-Rabin算法同时利用了另外一个定义:

  p是质数,x是正整数,x2%p=1,那么x%p=1或者x%p=p-1

  完整描述Miller-Rabin算法如下:(https://en.wikipedia.org/wiki/Miller–Rabin_primality_test) 

write n −  as **r·d with d odd by factoring powers of  from n −
WitnessLoop: repeat k times:
pick a random integer a in the range [, n − ]
x ← ad mod n
if x = or x = n − then
continue WitnessLoop
repeat r − times:
x ← x·x mod n
if x = then
return composite
if x = n − then
continue WitnessLoop
return composite
return probably prime

  里面用到了第二节提到的模幂算法,用bc实现了一遍Miller-Rabin算法,因为bc里面无自带随机函数,就直接利用标准输入来输入随机数了,整个实现如下:

#!/usr/bin/bc -q
define mod_mul(a1,a2,n)
{
return a1*a2%n;
}
define mod_exp(a,b,n)/* a^b%n */
{
while(b%2==0) {
a = mod_mul(a,a,n);
b /= 2;
}
ret = a;
b /= 2;
while(b!=0) {
a = mod_mul(a,a,n);
if(b%2 == 1)
ret = mod_mul(a,ret,n);
b /= 2;
}
return ret;
}
define Miller_Rabin(p, t)
{
if(p==1) {
return 0;
}
if(p<3) {
return 1;
}
if(p%2==0) {
return 0;
} }
define get_rand_num()
{
return read();
} define Miller_Rabin_test(n, k)
{
d = n-1;
r = 0;
while(d%2!=1) {
d /= 2;
r++;
} for(i=0;i<k;i++) {
a = get_rand_num();
x = mod_exp(a,d,n);
if(x==1||x==n-1) {
continue;
}
for(j=1;j<r;j++) {
x = mod_mul(x,x,n);
if(x==1) {
return 0;
} else if(x==n-1) {
j = r;
continue;
}
}
if(j==r) {
return 0;
}
}
return 1;
}

  

 

RSA简介(三)——寻找质数的更多相关文章

  1. RSA算法原理——(2)RSA简介及基础数论知识

    上期为大家介绍了目前常见加密算法,相信阅读过的同学们对目前的加密算法也算是有了一个大概的了解.如果你对这些解密算法概念及特点还不是很清晰的话,昌昌非常推荐大家可以看看HTTPS的加密通信原理,因为HT ...

  2. 加解密 3DES AES RSA 简介 示例 MD

    Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...

  3. RSA简介(二)——模幂算法

    RSA最终加密.解密都要用到模乘的幂运算,简称模幂运算. 回忆一下RSA,从明文A到B B=Ae1%N 对B解密,就是 A=Be2%N 其中,一般来说,加密公钥中的e1一般会比较小,取65537居多, ...

  4. 论RSA算法的重要性 -RSA 简介

    地球上最重要的算法 (这个说法似乎有点夸张了,但是当你了解了RSA算法后,就觉得不夸张了.) 如果没有 RSA 算法,现在的网络世界毫无安全可言,也不可能有现在的网上交易.上一篇文章 ssh 协议为什 ...

  5. RSA简介(一)——数论原理

    RSA是最常用的非对称加密算法. 所谓非对称加密,就是说有两个密钥,一个密钥加密只可以用另外一个密钥解密,一般一个作为公钥,公开给所有人用来加密用,而另一个用来解密其他拥有公钥的加密结果,叫做私钥.另 ...

  6. Spring Cloud Config - RSA简介以及使用RSA加密配置文件

    简介 RSA非对称加密有着非常强大的安全性,HTTPS的SSL加密就是使用这种方法进行HTTPS请求加密传输的.因为RSA算法会涉及Private Key和Public Key分别用来加密和解密,所以 ...

  7. RSA简介

    RSA概述 首先看这个加密算法的命名.很有意思,它其实是三个人的名字.早在1977年由麻省理工学院的三位数学家Rivest.Shamir 和 Adleman一起提出了这个加密算法,并且用他们三个人姓氏 ...

  8. 菜鸟脱壳之脱壳的基础知识(三)——寻找OEP

    这节我们来讲讲如何寻找一个程序的OEP,即Original Entry Point.一些PE加壳程序在被加密的程序上面加了一个区段(有的壳也会合并区段),当外壳代码执行完毕以后,会跳到程序的本身的代码 ...

  9. 4、DES和RSA简介

    DES是分组加密算法,速度快,使用单一密钥,加密解密都使用同一个密钥,一般用于大量数据加密,目前处于半淘汰状态. RSA算法是流式加密算法,速度慢,但是使用成对的密钥,加密解密使用不同的密钥,有利于保 ...

随机推荐

  1. spark streaming(2) DAG静态定义及DStream,DStreamGraph

    DAG 中文名有向无环图.它不是spark独有技术.它是一种编程思想 ,甚至于hadoop阵营里也有运用DAG的技术,比如Tez,Oozie.有意思的是,Tez是从MapReduce的基础上深化而来的 ...

  2. [leetcode-500-Keyboard Row]

    Given a List of words, return the words that can be typed using letters of alphabet on only one row' ...

  3. 0.搭建myeclipse开发环境

    1.配置jdk 2.myeclipse集成tomcat 选择默认jdk

  4. HTML5 Web SQL 数据库操作

    Web SQL 数据库 API 并不是 HTML5 规范的一部分,但是它是一个独立的规范,引入了一组使用 SQL 操作客户端数据库的 APIs. 以下是规范中定义的三个核心方法: openDataba ...

  5. Linux内核的基本概念

    Linux内核学习,推荐的书籍: <linux设备驱动开发详解第二版>.<Linux内核设计与实现第三版>.<嵌入式Linux应用开发完全手册> 第一篇:讲解Lin ...

  6. 关于Android log拿不到的情况

    遇到很多开发者说crash了,log没有看到..出现类似情况的基本原因是因为现在的国产厂商如crash了会直接将进程杀掉,于是你的studio就看不到了,可以往下面几个方向去想办法找到crash的lo ...

  7. NodeJS中的http模块

    利用http模块,nodejs可以开发服务器, 极大简化服务器的创建: var http = require("http"); //创建服务器 var server = http. ...

  8. RabbitMQ知多少

    1.引言 RabbitMQ--Rabbit Message Queue的简写,但不能仅仅理解其为消息队列,消息代理更合适.RabbitMQ 是一个由 Erlang 语言开发的AMQP(高级消息队列协议 ...

  9. 新篇章之我的java学习之路下

    昨天写下了人生的第一篇博客,今天接着写我的java学习之路有关开发及框架的学习过程. 想要学好java语言,只学习一些java的基本语法对实际开发中的用处还是不大的,所以我们还要掌握一些有关javaW ...

  10. sleep() 和 wait() 有什么区别?

    sleep()方法是使线程停止一段时间的方法.在sleep 时间间隔期满后,线程不一定立即恢复执行.这是因为在那个时刻,其它线程可能正在运行而且没有被调度为放弃执行,除非"醒来"的 ...