一、Storm中执行的组件

     我们知道,Storm的强大之处就是能够非常easy地在集群中横向拓展它的计算能力,它会把整个运算过程切割成多个独立的tasks在集群中进行并行计算。在Storm中,一个task就是执行在集群中的一个Spout或Bolt实例。

     为了方便理解Storm怎样并行处理我们分给它的任务,这里我先介绍一下在集群中涉及到Topology的四种组件:
  • Nodes(machines):集群中的节点,就是这些节点一起工作来执行Topology。
  • Workers(JVMs):一个worker就是一个独立的JVM进程。每一个节点都能够通过配置执行一个或多个workers,一个Topology能够指定由多少个workers来执行。
  • Executors(threads):一个worker JVM中执行的线程。一个worker进程能够执行一个或多个executor线程。一个Executor能够执行多个tasks,Storm默认一个每一个executor分配一个task。
  • Tasks(bolt/spout实例):Tasks就是spouts和bolts的实例,它详细是被executor线程处理的。

二、Storm中的并行(以WordCountTopology为例)

     我们能够通过配置来调整我们work的并行数量,如果我们不进行设置,Storm默认大部分过程的并行数量为1。如果我们对WordCountTopology不单独进行配置,那么我们的Topology运行情况例如以下图所看到的:
     我们的一个节点会为我们的Topology分配一个worker,这个worker会为每一个Task启动一个Executor线程。


2.1 为Topology添加workers

     一种最简单的提高Topology运算能力的途径就是为我们的Topology添加workers。Storm为我们提供了两种途径来添加workers:通过配置文件或通过程序设置。
     通过Config对象来配置workers:

          Config config = new Config();

     config.setNumWorkers(2);



注意:在LocalMode下无论设置几个workers,终于都仅仅有一个worker JVM进程。

2.2 配置executors和tasks

     前面我们已经说过,Storm会为每一个Topology组件创建一个task,而默认一个executor仅仅处理一个task。task是spouts和bolts的实例,一个executor线程可由处理多个tasks,tasks是真正处理详细数据的一个过程,我们在代码中写的spout和bolt能够看做是由集群中分布的tasks来执行的。Task的数量在整个topology执行期间通常是不变的,可是组件的Executors是有可能发生变化的。这也就意味着:threads<=tasks。

2.2.1 设置executor(thread)数量

     通过设置parallelism hint来指定一个组件的executors。
  • 描写叙述:每一个组件产生多少个Executor
  • 配置选项:?
  • 在代码中配置:
     以下我们指定SentenseSpout的并行数量为2,则这个Spout组件会有两个executors,每一个executor分配一个task,其Topology的执行情况例如以下图所看到的:
     );

2.2.2 设置task的数量

     通过setNumTasks()方法来指定一个组件的tasks数量。
     以下我们为SplitSentenceBolt 设置4个tasks和2个executors,这种话每一个executor线程将被分配运行4/2=2个tasks,然后再为WordCountBolt分配4个task,每一个task由一个executor负责运行。其Topology例如以下图所看到的:

    ).shuffleGrouping(SENTENCE_SPOUT_ID);

).fieldsGrouping(SPLIT_BOLT_ID, newFields("word"));



   假设一開始分配2个workers,则Topology的执行情况例如以下图所看到的:

 

三、一个topology的样例

     以下这幅图展示了一个实际topology的全景,topology由三个组件组成,一个Spout:BlueSpout,两个Bolt:GreenBolt、YellowBolt。

     如上图,我们配置了两个worker进程,两个Spout线程,两个GreenBolt线程和六个YellowBolt线程,那么分布到集群中的话,每一个工作进程都会有5个executor线程。以下看一下详细代码:

     java Config conf = new Config();
     conf.setNumWorkers(2); // use two worker processes

     topologyBuilder.setSpout(“blue-spout”, new BlueSpout(), 2); // set parallelism hint to 2

     topologyBuilder.setBolt(“green-bolt”, new GreenBolt(), 2) .setNumTasks(4) .shuffleGrouping(“blue-spout”);

     topologyBuilder.setBolt(“yellow-bolt”, new YellowBolt(), 6) .shuffleGrouping(“green-bolt”);

     StormSubmitter.submitTopology( “mytopology”, conf, topologyBuilder.createTopology() );

     当然,Storm中也有一个參数来控制topology的并行数量:

四、怎样改变一个执行topology中的Parallelism

     Storm中一个非常好的特性就是能够在topology执行期间动态调制worker进程或Executor线程的数量而不须要重新启动topology。这样的机制被称作rebalancing。
     我们有两种方式来均衡一个topology:
  1. 通过Storm web UI来均衡
  2. 通过CLI tool storm 来均衡
     以下就是一个CLI tool应用的样例:

# Reconfigure the topology “mytopology” to use 5 worker processes, # the spout “blue-spout” to use 3 executors and # the bolt      “yellow-bolt” to use 10 executors.

     $ storm rebalance mytopology -n 5 -e blue-spout=3 -e yellow-bolt=10 













Storm集群中执行的各种组件及其并行的更多相关文章

  1. Storm官方文档翻译之在生产环境集群中运行Topology

    在进群生产环境下运行Topology和在本地模式下运行非常相似.下面是步骤: 1.定义Topology(如果使用Java开发语言,则使用TopologyBuilder来创建) 2.使用StormSub ...

  2. Storm集群组件和编程模型

     Storm工作原理: Storm是一个开源的分布式实时计算系统,常被称为流式计算框架.什么是流式计算呢?通俗来讲,流式计算顾名思义:数据流源源不断的来,一边来,一边计算结果,再进入下一个流. 比 ...

  3. Storm集群安装部署步骤【详细版】

    作者: 大圆那些事 | 文章可以转载,请以超链接形式标明文章原始出处和作者信息 网址: http://www.cnblogs.com/panfeng412/archive/2012/11/30/how ...

  4. Storm集群安装详解

    storm有两种操作模式: 本地模式和远程模式. 本地模式:你可以在你的本地机器上开发测试你的topology, 一切都在你的本地机器上模拟出来; 远端模式:你提交的topology会在一个集群的机器 ...

  5. Storm入门教程 第三章Storm集群安装部署步骤、storm开发环境

    一. Storm集群组件 Storm集群中包含两类节点:主控节点(Master Node)和工作节点(Work Node).其分别对应的角色如下: 主控节点(Master Node)上运行一个被称为N ...

  6. Storm集群安装部署步骤

    本文以Twitter Storm官方Wiki为基础,详细描述如何快速搭建一个Storm集群,其中,项目实践中遇到的问题及经验总结,在相应章节以"注意事项"的形式给出. 1. Sto ...

  7. storm集群架构

    一.storm何许人也? Storm 是Twitter的一个开源框架.Storm一个分布式的.容错的实时计算系统,它被托管在GitHub上,遵循 Eclipse Public License 1.0. ...

  8. Storm 集群

    Apache Storm Storm是一个分布式的,可靠的,容错的数据流处理系统.Storm集群的输入流由一个被称作spout的组件管理,spout把数据传递给bolt,bolt要么把数据保存到某种存 ...

  9. storm集群相关资料

    1. Storm集群组件 Storm集群中包含两类节点:主控节点(Master Node)和工作节点(Work Node).其分别对应的角色如下: 主控节点(Master Node)上运行一个被称为N ...

随机推荐

  1. HDOJ 5071 Chat 模拟

    大模拟: 1>saygoodbye要先对 always on top 的人说 2>对没有说过话的不要说good bye 3>用long long Chat Time Limit: 2 ...

  2. Random Teams

    n participants of the competition were split into m teams in some manner so that each team has at le ...

  3. javascript笔记整理(数据类型强制/隐式转换 )

    A.数据类型强制转换 1.转换为数值类型 Number(参数) 把任何的类型转换为数值类型 A.如果是布尔值,false为0,true为1 var a=false;alert(Number(a)); ...

  4. CSS中怎么让DIV居中(转载)

    CSS 如何使DIV层水平居中 今天用CSS碰到个很棘手的问题,DIV本身没有定义自己居中的属性, 网上很多的方法都是介绍用上级的text-align: center然后嵌套一层DIV来解决问题. 可 ...

  5. 把VS2010的智能代码提示和注解从英文变成中文

    最近安装了个高级点的VS2010,起初还没留意.今天无意发现提示信息只能提示英文.....头大oooo. 我以为是个别现象,于是GG了下,发现有很多盆友都有这种. 记录下来了,以后省事儿: 访问MS的 ...

  6. Linux chmod权限管理需要小心的地方

    档案的权限管理和简单,比如chmod 775 /tmp/test.sh 另外使用chmod +w /tmp/test.sh,会给档案的拥有者,群组,其他人的权限都加上了可编辑.这样就有安全隐患了.所以 ...

  7. [置顶] 64位Win2008_VS2012使用ODP.NET遭遇问题和解决办法

    最近为使用Oracle11G数据库做个快速开发的小程序,使用64位Win2008+Vs2012环境,结果碰壁连环,幸好不算太笨,终于解决了,特记录一下. 测试环境: Oracle11g (11.2.0 ...

  8. Spark SQL Catalyst源代码分析之TreeNode Library

    /** Spark SQL源代码分析系列文章*/ 前几篇文章介绍了Spark SQL的Catalyst的核心执行流程.SqlParser,和Analyzer,本来打算直接写Optimizer的,可是发 ...

  9. MongoDB学习笔记(三) 在MVC模式下通过Jqgrid表格操作MongoDB数据

    看到下图,是通过Jqgrid实现表格数据的基本增删查改的操作.表格数据增删改是一般企业应用系统开发的常见功能,不过不同的是这个表格数据来源是非关系型的数据库MongoDB.nosql虽然概念新颖,但是 ...

  10. Codeforces Round #218 (Div. 2) (线段树区间处理)

    A,B大水题,不过B题逗比了题意没理解清楚,讲的太不清楚了感觉= =还是英语弱,白白错了两发. C: 二分答案判断是否可行,也逗比了下...二分的上界开太大导致爆long long了...   D: ...