显然这个函数是单词differential(微分)的简写,用于计算微分。实际上准确来说计算的是差商。

如果输入一个长度为n的一维向量,则该函数将会返回长度为n-1的向量,向量的值是原向量相邻元素的差,于是可以计算一阶导数的有限差分近似。
 

(1)符号微分

 1.常用的微分函数

函数:diff(f)     求表达式f对默认自变量的一次微分值

diff(f,x)  求表达式f对自变量x的一次积分值

diff(f,n)  求表达式f对默认自变量的n次微分值

diff(f,t,n)求表达式f对自变量t的n次微分值

>> x=1:10
x =
1 2 3 4 5 6 7 8 9 10
>> diff(x)
ans =
1 1 1 1 1 1 1 1 1

  

例1:求矩阵中各元素的导数

求矩阵[1/(1+a)  (b+x)/cos(x)

1/(x*y)   exp(x^2)]

对x的微分,可以输入以下命令

A = sym('[1/(1+a),(b+x)/cos(x);1,exp(x^2)]');
B = diff(A,'x')

可得到如下结果:

例2:求偏导数

的偏导数。

syms x y;
f = x*exp(y)/y^2;
fdx = diff(f,x)
fdy = diff(f,y)

可得到如下结果:

例3:求复合函数的导数

的导数

sym('x');
y = 'x*f(x^2)'
y1 = diff(y,'x')

得到结果如下:

例4:求参数方程的导数

对参数方程求导

syms a b t
f1 = a*cos(t);
f2 = b*sin(t);
A = diff(f2)/diff(f1) %此处代入了参数方程的求导公式
B = diff(f1)*diff(f2,2)-diff(f1,2)*diff(f2)/diff(f1)^3 %求二阶导数

可得到如下结果:

例5:求隐函数的导数

的一阶导数

syms x y
p = 'x*y(x)-exp(x+y(x))'
%隐函数可进行整体表示
%注意y(x)这种写法,它代表了y是关于x的函数
p1 = diff(p,x)

可得到如下结果:

2.符号积分

1符号函数的不定积分

函数:int

功能:求取函数的不定积分

语法:

int(f)

int(f,x)

说明:第一个是求函数f对默认自变量的积分值;第二个是求自变量f对对自变量t的不定积分值。

例:分别求函数f(x)=(3-x23的不定积分。

x = sym('x');
%函数的输入
f1 = (3-x^2)^3;
f2 = sqrt(x^3 + x^4);
%对函数进行积分
intf1 = int(f1)
intf2 = int(f2)

可得结果如下:

2符号函数的定积分

函数:int

功能:求取函数的定积分

语法:

int(f,a,b)

int(f,x,a,b)

说明:第一个是求表达式f对默认自变量的定积分值,积分区间为

[a,b];第二个是求表达式f对自变量x的定积分值,积分区间为[a,b]。

例:分别求的定积分。

syms x t

%输入函数方程式
f1 = abs(1-x);
f2 = 1/(1+x^2);
f3 = 4*t*x;
f4 = x^3/(x-1)^100; %求取函数积分
intf1 = int(f1,1,2)
intf2 = int(f2,-inf,+inf)
intf3 = int(f3,2,sin(t))
intf4 = int(f4,2,3)

可得到如下结果:

(2)数值微分

在MATLAB中,没有直接提供求数值导数的函数,只有计算向前差分的函数diff。

函数:diff

功能:求取数值微分

语法:

DX = diff(X)

DX = diff(X,n)

DX = diff(X,n,dim)

说明:第一个计算向量X的向前差分,即DX(i) = X(i+1)-X(i),i=1,2,...,n-1。第二个是计算X的n阶向前差分。例如,diff(X,2)=diff(diff(X))。第三个计算矩阵A的n阶差分,当dim=1或缺省状态时,按行计算差分;dim=2,按列计算差分。

例:设x由[0,2π]间均匀分布的10个点组成,求sinx的1到3阶差分。

x = linspace(0,2*pi,10);
y = sin(x);
Dy = diff(y)
Dy2 = diff(y,2)
Dy3 = diff(y,3)
plot(x,y,'B');hold on
plot(Dy,'Y');plot(Dy2,'G');plot(Dy3,'R');
title('sinx的1到3阶差分')
xlabel('x');ylabel('y')

可得到结果如下

图形如下:

注:二维图形常用设置选项

例:求函数的数值微分,并画出函数图比较

x = 0:0.01:2 %数值微分&积分需要先确定数值的范围,这一点与符号微分&积分有所不同。
f = x.^2.*cos(x)./(3*x+2)
Df = diff(f)
plot(x,f,'r')
hold on
y = x(1:200);
plot(y,Df,'b')
legend('函数图','微分图')

  

可得到如图所示图线

数值积分

求解定积分的数值方法多种多样,如简单的梯形法、辛普生(Simpson)法、牛顿-科特斯(Newton-Cotes)法等都是经常采用的方法。他们的基本思想都是将整个积分区间[a,b]分成n个子区间[xi,xi+1],i = 1,2,…,n,其中x1=a,xn+1=b。这样求定积分问题就变成了求和问题。

1、变步长辛普森法

基于变步长辛普森法,MATLAB给出了quad函数来求定积分。

函数:quad

功能:求取基于变步长辛普森法的数值定积分。

语法:[I,n]=quad('fname',a,b,tol,trace)

说明:fname是被积函数名(需要新建一个函数)。a和b分别是定积分的上限和下限。tol用来控制积分精度,缺省时取tol = 10-6,。trace控制是否展现积分过程,取非0为展现积分过程,取0则不展现,缺省时trace = 0.返回参数I即定积分值,n为被积函数的调用次数。

例:用变步长辛普森法计算函数f(x)=e-0.2xsin(x+π/3)在区间[0.3π]的定积分

首先建立被积函数文件fesin.m

function f = fesin(x)
f = exp(-0.2*x).*sin(x+pi/3);

  

然后调用数值积分函数quad来求定积分

[S,n] = quad('f',0,3*pi)

  

2、牛顿-科斯特法

在MATLAB中,使用Newton-Cotes来求取定积分函数为quadl。

函数:quadl

功能:基于Newton-Cotes法来求数值定积分

语法:[I,n] = quadl('fname',a,b,lol,trace)

说明:参数的含义和quad函数相似,只是tol的缺省值取10-6。该函数可以更精确地求出定积分的值,且一般情况下函数调用的步数明显小于quad函数,从而保证以更高的效率求出所需的定积分值。

MATLAB中的微积分运算(数值&符号)的更多相关文章

  1. MATLAB中的集合运算

    matlab里关于集合运算和二进制数的运算的函数 intersect:集合交集ismember :是否集合中元素setdiff :集合差集setxor :集合异或(不在交集中的元素)union :两个 ...

  2. MATLAB中的积分运算

    MATLAB中计算一元函数的(不)定积分使用int函数. ①int(s)计算符号表达式s的不定积分 syms x;s = x^2;int(s) 计算x^2的不定积分. ②int(s,x)计算符号表达式 ...

  3. MATLAB中的多项式运算

    作者:长沙理工大学 交通运输工程学院 王航臣 1.多项式求根 在MATLAB中求取多项式的根用roots函数. 函数:roots 功能:一元高次方程求解. 语法:roots(c) 说明:返回一个列向量 ...

  4. Matlab中要显示数学公式或符号Latex

    \rho 代表  ρ, \sigma  代表 σ \alpha   α \beta    β \gamma   γ \delta   δ \epsilon    ϵ \zeta    ζ \eta   ...

  5. matlab中bitshift 将位移动指定位数

    来源:https://ww2.mathworks.cn/help/matlab/ref/bitshift.html?searchHighlight=bitshift&s_tid=doc_src ...

  6. matlab 中txt文件(含字符及数值)处理

    matlab 中txt文件(含字符及数值)处理 (2008-08-02 09:45:12) 转载▼ 标签: 杂谈 分类: matlab及C学习 Matlab文件操作及读txt文件ZZ 2008-07- ...

  7. Mathlab编程-微积分在Matlab中的解法

    这一章节将介绍一系列典型的微积分问题(求极限.级数.定积分.导数.重积分等)在Matlab中的求解. 首先关于极限: (1)    数列极限: 给出下面三段例程. 求解数列极限的limit函数参数说明 ...

  8. C语言中无符号数和有符号数之间的运算

    C语言中无符号数和有符号数之间的运算 C语言中有符号数和无符号数进行运算(包括逻辑运算和算术运算)默认会将有符号数看成无符号数进行运算,其中算术运算默认返回无符号数,逻辑运算当然是返回0或1了. un ...

  9. matlab 中使用 GPU 加速运算

    为了提高大规模数据处理的能力,matlab 的 GPU 并行计算,本质上是在 cuda 的基础上开发的 wrapper,也就是说 matlab 目前只支持 NVIDIA 的显卡. 1. GPU 硬件支 ...

随机推荐

  1. gof设计模式回顾

    gof23根据讲师学习笔记回顾: 1.gof:Gang of Four;叫grasp更具有针对性,解决具体的问题; ---------------------总共分为三大类: ---------创建型 ...

  2. Android中的dp,px以及wrap_content的实际展示效果

    因为一个效果中的图片设置了wrap_content的属性,但在720dp跟540dp上面显示不一致使老大非常恼火.跟他讲也讲不明白.于是乎让我们彼此测试来探个究竟.首先测试的是个图片: 它的物理像素是 ...

  3. JavaScript module pattern精髓

    JavaScript module pattern精髓 avaScript module pattern是一种常见的javascript编码模式.这种模式本身很好理解,但是有很多高级用法还没有得到大家 ...

  4. Easyui布局

    Easyui入门视频教程 第03集---Easyui布局 Easyui入门视频教程 第03集---Easyui布局 目录 -----------------------   Easyui入门视频教程 ...

  5. Dynamics CRM 警惕Odata查询的陷阱

    Dynamics CRM可以很方便的通过用Odata通过AJAX查询到数据.查询分为两种:精确查找和模糊查找. 精确查找是指通过GUID匹配得到一条数据,如: http://CRMURL/org/XR ...

  6. 类图class的关联关系(聚合、组合)

    类图class的关联关系(聚合.组合) 关联的概念 关联用来表示两个或多个类的对象之间的结构关系,它在代码中表现为一个类以属性的形式包含对另一个类的一个或多个对象的应用. 程序演示:关联关系(code ...

  7. Google Adsense(Google网站联盟)广告申请指南

    Google AdSense 是一种获取收入的快速简便的方法,适合于各种规模的网站发布商.它可以在网站的内容网页上展示相关性较高的 Google 广告,并且这些广告不会过分夸张醒目.由于所展示的广告同 ...

  8. socket网络编程快速上手(二)——细节问题(1)

    三.细节问题一个也不能少 Socket编程说简单也简单,程序很容易就能跑起来,说麻烦还真是麻烦,程序动不动就出问题.记得刚开始写网络代码的时候,那真是令人抓狂的经历,问题一个套一个,一会服务器起不来了 ...

  9. 自定义的UIAlertView不能在iOS7上正常显示

    众所周知,当伟大的iOS7系统发布后,表扬的一堆.谩骂的也一片,而对于我们程序员来说最关心的莫过于低版本系统上的程序在搞版本系统上的兼容性问题了. 在iOS6.1几之前,当我们想要做一些提醒用户或临时 ...

  10. IO多路复用之select

    IO多路复用之select总结   1.基本概念 IO多路复用是指内核一旦发现进程指定的一个或者多个IO条件准备读取,它就通知该进程.IO多路复用适用如下场合: (1)当客户处理多个描述字时(一般是交 ...