1119. Metro

Time limit: 0.5 second Memory limit: 64 MB
Many of SKB Kontur programmers like to get to work by Metro because the main office is situated quite close the station Uralmash. So, since a sedentary life requires active exercises off-duty, many of the staff — Nikifor among them — walk from their homes to Metro stations on foot.
Nikifor lives in a part of our city where streets form a grid of residential quarters. All the quarters are squares with side 100 meters. A Metro entrance is situated at one of the crossroads. Nikifor starts his way from another crossroad which is south and west of the Metro entrance. Naturally, Nikifor, starting from his home, walks along the streets leading either to the north or to the east. On his way he may cross some quarters diagonally from their south-western corners to the north-eastern ones. Thus, some of the routes are shorter than others. Nikifor wonders, how long is the shortest route.
You are to write a program that will calculate the length of the shortest route from the south-western corner of the grid to the north-eastern one.

Input

There are two integers in the first line: N and M (0 < N,M ≤ 1000) — west-east and south-north sizes of the grid. Nikifor starts his way from a crossroad which is situated south-west of the quarter with coordinates (1, 1). A Metro station is situated north-east of the quarter with coordinates (NM). The second input line contains a number K (0 ≤ K ≤ 100) which is a number of quarters that can be crossed diagonally. Then K lines with pairs of numbers separated with a space follow — these are the coordinates of those quarters.

Output

Your program is to output a length of the shortest route from Nikifor's home to the Metro station in meters, rounded to the integer amount of meters.

Sample

input output
3 2
3
1 1
3 2
1 2
383

题意;城市为正方形格子,每个格子的边长为100米。地铁站在其中一个十字路口。Nikanor从家里步行到地铁站。他沿着街道走,也可以穿越某一些格子的对角线,这样会近一些。 求Nikanor从西南角的家到东北角地铁站的最短路径。

思路:利用dp做,有两个递推方程,对于一个点来说,如果可以另一点斜着过了则求dp[i][j-1]+100、dp[i-1][j]+100、dp[i-1][j-1]+sqrt(2)*100中的最小值,否则求dp[i][j-1]+100、dp[i-1][j]+100中的最小值。

 #include<iostream>
#include<cstdio>
#include<cmath> using namespace std;
int s[][]={};
double dp[][]={}; double min(double a,double b,double c=)
{
if(a>b)
return b<c?b:c;
else
return a<c?a:c;
} int main()
{
// freopen("1.txt","r",stdin);
int n,m;
cin>>n>>m;
int k;
cin>>k;
int i,j;
int a,b;
n++;
m++;
for(i=;i<=n;i++)
dp[][i]=;
for(i=;i<=m;i++)
dp[i][]=;
for(i=;i<k;i++)
{
cin>>a>>b;
s[b+][a+]=;
}
for(i=;i<=m;i++)
{
for(j=;j<=n;j++)
{
if(i==&&j==)continue;
if(s[i][j]==)
{//如果改点可以由一点斜着到达
dp[i][j]=min(dp[i][j-]+,dp[i-][j]+,dp[i-][j-]+sqrt(2.0)*);//比较得出dp[i][j-1]+100、dp[i-1][j]+100、dp[i-1][j-1]+sqrt(2)*100中的最小值;
}//注意sqrt()里面是精度数,例如不可以是2,单可以是2.0
else
{//改点不可以由一点斜着到达
dp[i][j]=min(dp[i][j-]+,dp[i-][j]+);//比较求出dp[i][j-1]+100、dp[i-1][j]+100中的最小值
}
}
}
printf("%.0lf\n",dp[m][n]);
return ;
}

ural 1119. Metro(动态规划)的更多相关文章

  1. 递推DP URAL 1119 Metro

    题目传送门 /* 题意:已知起点(1,1),终点(n,m):从一个点水平或垂直走到相邻的点距离+1,还有k个抄近道的对角线+sqrt (2.0): 递推DP:仿照JayYe,处理的很巧妙,学习:) 好 ...

  2. URAL 1119. Metro(BFS)

    点我看题目 题意  : 这个人在左下角,地铁在右上角,由很多格子组成的地图,每一条边都是一条路,每一条边都是100米.还有的可以走对角线,问你从起点到终点最短是多少. 思路 : 其实我想说一下,,,, ...

  3. ural 1119 Metro

    http://acm.timus.ru/problem.aspx?space=1&num=1119 #include <cstdio> #include <cstring&g ...

  4. URAL 1119. Metro(DP)

    水题. #include <cstring> #include <cstdio> #include <string> #include <iostream&g ...

  5. UVA1025-A Spy in the Metro(动态规划)

    Problem UVA1025-A Spy in the Metro Accept: 713  Submit: 6160Time Limit: 3000 mSec Problem Descriptio ...

  6. URAL DP第一发

    列表: URAL 1225 Flags URAL 1009 K-based Numbers URAL 1119 Metro URAL 1146 Maximum Sum URAL 1203 Scient ...

  7. URAL(DP集)

    这几天扫了一下URAL上面简单的DP 第一题 简单递推 1225. Flags #include <iostream> #include<cstdio> #include< ...

  8. 要back的题目 先立一个flag

    要back的题目 目标是全绿!back一题删一题! acmm7 1003 1004 acmm8 1003 1004 sysu20181013 Stat Origin Title Solved A Gy ...

  9. CJOJ 1976 二叉苹果树 / URAL 1018 Binary Apple Tree(树型动态规划)

    CJOJ 1976 二叉苹果树 / URAL 1018 Binary Apple Tree(树型动态规划) Description 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的 ...

随机推荐

  1. CodeForces 669E Little Artem and Time Machine

    树状数组,$map$. 可以理解为开一个数组$f[i][j]$记录:$i$这个数字在时间$j$的操作情况. 操作$1$:$f[x][t]++$.操作$2$:$f[x][t]--$.操作$3$:$f[x ...

  2. db2 备份还原

    一.导入导出 ixf: db2 export to /tmp/xxx.csv of ixf lobs to . xml to . modified by codepage=1208 "sel ...

  3. CCF-CSP 最大的矩形

    问题描述 在横轴上放了n个相邻的矩形,每个矩形的宽度是1,而第i(1 ≤ i ≤ n)个矩形的高度是hi.这n个矩形构成了一个直方图.例如,下图中六个矩形的高度就分别是3, 1, 6, 5, 2, 3 ...

  4. vue的测试(Vue.js devtool)

    1. 安装chrome插件:Vue.js devtools(https://chrome.google.com/webstore/detail/vuejs-devtools/nhdogjmejigli ...

  5. response.setContentType与 request.setCharacterEncoding 区别

    1.request.setCharacterEncoding()是设置从request中取得的值或从数据库中取出的值的编码 2.response.setContentType指定 HTTP 响应的编码 ...

  6. hibernate简单的增删改查

    获取当前线程的session protected Session getSession() { return sessionFactory.getCurrentSession(); } 增加:save ...

  7. python 基础学习4-with语句

    why use With? 有些事情需要事先进行设置,事后进行处理,with语句提供了一个很好的处理方式,例如文件读写处理,有时候可能忘记关闭文件,with可以很好地处理这种现象. with语句用来简 ...

  8. Redis链表相关操作命令

    lists链表类型lists类型就是一个双向链表,通过push,pop操作.从链表的头部或者尾部添加删除元素,这样list即可以作为栈也可以作为队列 lpush key value 在链表key的头部 ...

  9. yield 学习笔记

    第三部分(先看) 先讲 iterator 和 iterable 可迭代对象 (Iterable) 是实现了__iter__()方法的对象, 通过调用iter()方法可以获得一个迭代器 (Iterato ...

  10. Scala学习---数组

    1.编写一段代码,将a设置为一个n个随机整数的数组,要求随机数介于0(包含)和n(不包含)之间 /** * Created by vito on 2017/1/11. */ object ex1 { ...