1119. Metro

Time limit: 0.5 second Memory limit: 64 MB
Many of SKB Kontur programmers like to get to work by Metro because the main office is situated quite close the station Uralmash. So, since a sedentary life requires active exercises off-duty, many of the staff — Nikifor among them — walk from their homes to Metro stations on foot.
Nikifor lives in a part of our city where streets form a grid of residential quarters. All the quarters are squares with side 100 meters. A Metro entrance is situated at one of the crossroads. Nikifor starts his way from another crossroad which is south and west of the Metro entrance. Naturally, Nikifor, starting from his home, walks along the streets leading either to the north or to the east. On his way he may cross some quarters diagonally from their south-western corners to the north-eastern ones. Thus, some of the routes are shorter than others. Nikifor wonders, how long is the shortest route.
You are to write a program that will calculate the length of the shortest route from the south-western corner of the grid to the north-eastern one.

Input

There are two integers in the first line: N and M (0 < N,M ≤ 1000) — west-east and south-north sizes of the grid. Nikifor starts his way from a crossroad which is situated south-west of the quarter with coordinates (1, 1). A Metro station is situated north-east of the quarter with coordinates (NM). The second input line contains a number K (0 ≤ K ≤ 100) which is a number of quarters that can be crossed diagonally. Then K lines with pairs of numbers separated with a space follow — these are the coordinates of those quarters.

Output

Your program is to output a length of the shortest route from Nikifor's home to the Metro station in meters, rounded to the integer amount of meters.

Sample

input output
3 2
3
1 1
3 2
1 2
383

题意;城市为正方形格子,每个格子的边长为100米。地铁站在其中一个十字路口。Nikanor从家里步行到地铁站。他沿着街道走,也可以穿越某一些格子的对角线,这样会近一些。 求Nikanor从西南角的家到东北角地铁站的最短路径。

思路:利用dp做,有两个递推方程,对于一个点来说,如果可以另一点斜着过了则求dp[i][j-1]+100、dp[i-1][j]+100、dp[i-1][j-1]+sqrt(2)*100中的最小值,否则求dp[i][j-1]+100、dp[i-1][j]+100中的最小值。

 #include<iostream>
#include<cstdio>
#include<cmath> using namespace std;
int s[][]={};
double dp[][]={}; double min(double a,double b,double c=)
{
if(a>b)
return b<c?b:c;
else
return a<c?a:c;
} int main()
{
// freopen("1.txt","r",stdin);
int n,m;
cin>>n>>m;
int k;
cin>>k;
int i,j;
int a,b;
n++;
m++;
for(i=;i<=n;i++)
dp[][i]=;
for(i=;i<=m;i++)
dp[i][]=;
for(i=;i<k;i++)
{
cin>>a>>b;
s[b+][a+]=;
}
for(i=;i<=m;i++)
{
for(j=;j<=n;j++)
{
if(i==&&j==)continue;
if(s[i][j]==)
{//如果改点可以由一点斜着到达
dp[i][j]=min(dp[i][j-]+,dp[i-][j]+,dp[i-][j-]+sqrt(2.0)*);//比较得出dp[i][j-1]+100、dp[i-1][j]+100、dp[i-1][j-1]+sqrt(2)*100中的最小值;
}//注意sqrt()里面是精度数,例如不可以是2,单可以是2.0
else
{//改点不可以由一点斜着到达
dp[i][j]=min(dp[i][j-]+,dp[i-][j]+);//比较求出dp[i][j-1]+100、dp[i-1][j]+100中的最小值
}
}
}
printf("%.0lf\n",dp[m][n]);
return ;
}

ural 1119. Metro(动态规划)的更多相关文章

  1. 递推DP URAL 1119 Metro

    题目传送门 /* 题意:已知起点(1,1),终点(n,m):从一个点水平或垂直走到相邻的点距离+1,还有k个抄近道的对角线+sqrt (2.0): 递推DP:仿照JayYe,处理的很巧妙,学习:) 好 ...

  2. URAL 1119. Metro(BFS)

    点我看题目 题意  : 这个人在左下角,地铁在右上角,由很多格子组成的地图,每一条边都是一条路,每一条边都是100米.还有的可以走对角线,问你从起点到终点最短是多少. 思路 : 其实我想说一下,,,, ...

  3. ural 1119 Metro

    http://acm.timus.ru/problem.aspx?space=1&num=1119 #include <cstdio> #include <cstring&g ...

  4. URAL 1119. Metro(DP)

    水题. #include <cstring> #include <cstdio> #include <string> #include <iostream&g ...

  5. UVA1025-A Spy in the Metro(动态规划)

    Problem UVA1025-A Spy in the Metro Accept: 713  Submit: 6160Time Limit: 3000 mSec Problem Descriptio ...

  6. URAL DP第一发

    列表: URAL 1225 Flags URAL 1009 K-based Numbers URAL 1119 Metro URAL 1146 Maximum Sum URAL 1203 Scient ...

  7. URAL(DP集)

    这几天扫了一下URAL上面简单的DP 第一题 简单递推 1225. Flags #include <iostream> #include<cstdio> #include< ...

  8. 要back的题目 先立一个flag

    要back的题目 目标是全绿!back一题删一题! acmm7 1003 1004 acmm8 1003 1004 sysu20181013 Stat Origin Title Solved A Gy ...

  9. CJOJ 1976 二叉苹果树 / URAL 1018 Binary Apple Tree(树型动态规划)

    CJOJ 1976 二叉苹果树 / URAL 1018 Binary Apple Tree(树型动态规划) Description 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的 ...

随机推荐

  1. google 技巧

    inurl: 用于搜索网页上包含的URL. 这个语法对寻找网页上的搜索,帮助之类的很有用. intext: 只搜索网页部分中包含的文字(也就是忽略了标题,URL等的文字). site: 可以限制你搜索 ...

  2. c#弱事件(weak event)

    传统事件publisher和listener是直接相连的,这样会对垃圾回收带来一些问题,例如listener已经不引用任何对象但它仍然被publisher引用 垃圾回收器就不能回收listener所占 ...

  3. Tiny6410之按键裸机驱动

    操作步骤: 第一步:查看开发板电路原理图 找到LED 和按键的管脚所对应的寄存器 LED:(见Tiny6410之LED裸机驱动) nLED_1 - GPK4 nLED_2 - GPK5 nLED_3 ...

  4. matlab里plot设置线形和颜色

    plot(x,y,'r--')% r为颜色,--为线形

  5. 多线程随笔一(AutoResetEvent和ManulResetEvent)

    AutoResetEvent和ManulResetEvent是.net中用来做线程的同步的两个类.从类名上不难看出,这两个类的区别在于一个是自动的,一个是手动的(这不是废话嘛).两个类的实现原理大致相 ...

  6. HAProxy 代理负载均衡

    HAProxy HAProxy是免费 高效 可靠的高可用及负载均衡解决方案,该软件非常适合于处理高负载站点的七层数据请求,HAProxy的工作模式使其可以非常容易且安全地集成到我们现有的站点架构中.使 ...

  7. python 基础学习-总结1

    1.Python 简介 易学易懂,语法简单 不需编译,即可运行 比其他语言更简洁 不需要管理内存 1.1 什么是Python? python 是由Guido.van.Rossum于1989年始创,其根 ...

  8. python学习第一天内容整理

    .cnblogs_code { width: 500px } 一.python 的历史 (摘自百度百科,了解就ok) Python[1]  (英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn ...

  9. 安装Redis无错流程

    1.参考文章<安装3.0.3版本配置文章参考>http://www.iyunv.com/thread-89612-1-1.html 2.安装tcl组件包(安装Redis需要tcl支持) 下 ...

  10. 部分服务器使用phpExcel会报错

    其中一个错误提示是:Fatal error: 'break' not in the 'loop' or 'switch' context in /var/www/htdocs/hanya/ThinkP ...