主题:

Quoit Design

Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 136 Accepted Submission(s): 77
 
Problem Description
Have you ever played quoit in a playground? Quoit is a game in which flat rings are pitched at some toys, with all the toys encircled awarded.
In the field of Cyberground, the position of each toy is fixed, and the ring is carefully designed so it can only encircle one toy at a time. On the other hand, to make the game look more attractive, the ring is designed to have the largest radius. Given a configuration of the field, you are supposed to find the radius of such a ring.

Assume that all the toys are points on a plane. A point is encircled by the ring if the distance between the point and the center of the ring is strictly less than the radius of the ring. If two toys are placed at the same point, the radius of the ring is considered to be 0.

 
Input
The input consists of several test cases. For each case, the first line contains an integer N (2 <= N <= 100,000), the total number of toys in the field. Then N lines follow, each contains a pair of (x, y) which are the coordinates of a toy. The input is terminated by N = 0.
 
Output
For each test case, print in one line the radius of the ring required by the Cyberground manager, accurate up to 2 decimal places. 
 
Sample Input
2
0 0
1 1
2
1 1
1 1
3
-1.5 0
0 0
0 1.5
0
 
Sample Output
0.71
0.00
0.75
 
Author
CHEN, Yue
 
Source
ZJCPC2004
 
Recommend
JGShining

题目分析:

最小点对问题。所谓的最小点对问题就是,在n个点中找到2个点间的最短距离。这样的题有两种思路:

1)直接暴力。看一看数据规模,n都在100000左右了,O(n^2)的算法,不出意外,会TLE。

2)分治。

这道题用的是吉林大学的模板。直接套进去即可了。

与最小点对问题相应的是最大点对问题(不知道有没有这个名词,假设没有就当是我瞎编的吧。

所谓的最大点对问题,在我的定义里就是,在n个点中找到两个点之间的最大距离)。

可以产生最大距离的这两个点一定在凸包上。这时候我们仅仅要枚举凸包上的随意两个点即可。事实上这时候除了盲目枚举外,另一种更好的算法来解决问题——旋转卡壳算法。

代码例如以下:

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring> using namespace std; /**
* 求n个点中,2个点之间的最短距离。
* 1)直接暴力。 肯定会TLE
* 2)使用吉林大学的模板
*/
const int N = 100005;
const double MAX = 10e100, eps = 0.00001;
struct Point {
double x, y;
int index;
};
Point a[N], b[N], c[N];
double closest(Point *, Point *, Point *, int, int);
double dis(Point, Point);
int cmp_x(const void *, const void*);
int cmp_y(const void *, const void*);
int merge(Point *, Point *, int, int, int);
inline double min(double, double); int main(){
int n;
while(scanf("%d",&n)!=EOF,n){
int i;
for(i = 0 ; i < n ; ++i){
scanf("%lf %lf",&a[i].x,&a[i].y);
}
qsort(a,n,sizeof(a[0]),cmp_x);
for(i = 0 ; i < n ; ++i){
a[i].index = i;
} /**
* memcpy(目标地址,起始地址,n个字节)
* 作用:从起始地址拷贝n个字节到目标地址
* 头文件: 尽量把 <cstring>引入
*
*/
memcpy(b,a,n*sizeof(a[0])); qsort(b,n,sizeof(b[0]),cmp_y); double ans = closest(a,b,c,0,n-1); printf("%.2lf\n",ans/2);
} return 0;
} double closest(Point a[], Point b[], Point c[], int p, int q) {
if (q - p == 1){
return dis(a[p], a[q]);
}
if (q - p == 2) {
double x1 = dis(a[p], a[q]);
double x2 = dis(a[p + 1], a[q]);
double x3 = dis(a[p], a[p + 1]);
if (x1 < x2 && x1 < x3){
return x1;
}
else if (x2 < x3){
return x2;
}
else{
return x3;
}
}
int i, j, k, m = (p + q) / 2;
double d1, d2;
for (i = p, j = p, k = m + 1; i <= q; i++){
if (b[i].index <= m){
c[j++] = b[i];
}
// 数组c 左半部保存划分后左部的点, 且对y 是有序的.
else{
c[k++] = b[i];
}
}
d1 = closest(a, c, b, p, m);
d2 = closest(a, c, b, m + 1, q);
double dm = min(d1, d2);
// 数组c 左右部分各自是对y 坐标有序的, 将其合并到b.
merge(b, c, p, m, q);
for (i = p, k = p; i <= q; i++){
if (fabs(b[i].x - b[m].x) < dm){
c[k++] = b[i];
}
}
// 找出离划分基准左右不超过dm 的部分, 且仍然对y 坐标有序.
for (i = p; i < k; i++){
for (j = i + 1; j < k && c[j].y - c[i].y < dm; j++) {
double temp = dis(c[i], c[j]);
if (temp < dm){
dm = temp;
}
}
}
return dm;
}
double dis(Point p, Point q) {
double x1 = p.x - q.x, y1 = p.y - q.y;
return sqrt(x1 * x1 + y1 * y1);
}
int merge(Point p[], Point q[], int s, int m, int t) {
int i, j, k;
for (i = s, j = m + 1, k = s; i <= m && j <= t;) {
if (q[i].y > q[j].y){
p[k++] = q[j], j++;
}else{
p[k++] = q[i], i++;
}
}
while (i <= m){
p[k++] = q[i++];
}
while (j <= t){
p[k++] = q[j++];
} memcpy(q + s, p + s, (t - s + 1) * sizeof(p[0]));
return 0;
}
int cmp_x(const void *p, const void *q) {
double temp = ((Point*) p)->x - ((Point*) q)->x;
if (temp > 0){
return 1;
}
else if (fabs(temp) < eps){
return 0;
}
else{
return -1;
}
}
int cmp_y(const void *p, const void *q) {
double temp = ((Point*) p)->y - ((Point*) q)->y;
if (temp > 0){
return 1;
}
else if (fabs(temp) < eps){
return 0;
}
else{
return -1;
}
}
inline double min(double p, double q) {
return (p > q) ? (q) : (p);
}

(hdu 7.1.8)Quoit Design(最低点——在n一个点,发现两点之间的最小距离)的更多相关文章

  1. HDU 1007 Quoit Design(二分+浮点数精度控制)

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  2. HDU 1007 Quoit Design(经典最近点对问题)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...

  3. hdu 1007 Quoit Design (最近点对问题)

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  4. HDU 1007 Quoit Design【计算几何/分治/最近点对】

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  5. hdu 1007 Quoit Design 分治求最近点对

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  6. HDU 1007:Quoit Design(分治求最近点对)

    http://acm.hdu.edu.cn/showproblem.php?pid=1007 题意:平面上有n个点,问最近的两个点之间的距离的一半是多少. 思路:用分治做.把整体分为左右两个部分,那么 ...

  7. ACM-计算几何之Quoit Design——hdu1007 zoj2107

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  8. Quoit Design(最近点对+分治)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...

  9. HDU1007 Quoit Design 【分治】

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

随机推荐

  1. CF 17B Hierarchy

    Nick's company employed n people. Now Nick needs to build a tree hierarchy of «supervisor-surbodinat ...

  2. Response.Redirect 打开这两种方法的一种新形式

    在一般情况下.Response.Redirect 该方法是在server年底转向,因此,除非 Response.Write("<script>window.location='h ...

  3. Java方法区和运行时常量池溢出问题分析(转)

    运行时常量池是方法区的一部分,方法区用于存放Class的相关信息,如类名.访问修饰符.常量池.字段描述.方法描述等. String.intern()是一个native方法,它的作用是:如果字符串常量池 ...

  4. vlan 以及 Linux实现的IEEE 802.1Q VLAN

    vlan 以及 Linux实现的IEEE 802.1Q VLAN Vlan的概念 VLAN技术介绍 VLANVLAN概述 以太网是一种基于CSMA/CD(Carrier Sense Multiple ...

  5. POJ2528 Mayor&#39;s posters 【线段树】+【成段更新】+【离散化】

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 39795   Accepted: 11552 ...

  6. [计算机基础]HTTP协议学习笔记

    HTTP:Hypertext transfer protocol超文本传输协议是一种详细规定了浏览器和Internet之间互相通信的规则 HTTP允许传输任意类型的数据对象,由Content-Type ...

  7. 关于NSArray的几种排序:

    #利用数组的sortedArrayUsingComparator调用 NSComparator  当中NSComparator事实上就是一个返回NSComparisonResult的block. ty ...

  8. BT5 firefox Flash插件问题

    今天在BT下安装了Nessus,好不容易安装好了,注册成功,本以为大功告成,但是在最后关头,却出现一个“未安装flash插件”错误,在bT下尝试着安装flahs插件,蛋碎一地,,,没能解决. 我的BT ...

  9. 使用国内源解决Qt在线更新慢的问题

    Qt在线安装更新工具默认使用官方的源,国内访问比较慢,可以在setting中增加国内的源来提高更新速度,如下面的源: http://mirrors.ustc.edu.cn/qtproject/onli ...

  10. contiki etimer部分

    1.前言     contiki是一款小型开源,易于移植的多任务操作系统,专门为无线传感网设计,适合内存受限制的网络系统.国内的研究和应用还处于初级阶段,甚至还不知道这个contiki如何发音,也没有 ...