(hdu 7.1.8)Quoit Design(最低点——在n一个点,发现两点之间的最小距离)
主题:
Quoit Design |
| Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) |
| Total Submission(s): 136 Accepted Submission(s): 77 |
|
Problem Description
Have you ever played quoit in a playground? Quoit is a game in which flat rings are pitched at some toys, with all the toys encircled awarded.
In the field of Cyberground, the position of each toy is fixed, and the ring is carefully designed so it can only encircle one toy at a time. On the other hand, to make the game look more attractive, the ring is designed to have the largest radius. Given a configuration of the field, you are supposed to find the radius of such a ring. Assume that all the toys are points on a plane. A point is encircled by the ring if the distance between the point and the center of the ring is strictly less than the radius of the ring. If two toys are placed at the same point, the radius of the ring is considered to be 0. |
|
Input
The input consists of several test cases. For each case, the first line contains an integer N (2 <= N <= 100,000), the total number of toys in the field. Then N lines follow, each contains a pair of (x, y) which are the coordinates of a toy. The input is terminated by N = 0.
|
|
Output
For each test case, print in one line the radius of the ring required by the Cyberground manager, accurate up to 2 decimal places.
|
|
Sample Input
2 |
|
Sample Output
0.71 |
|
Author
CHEN, Yue
|
|
Source
ZJCPC2004
|
|
Recommend
JGShining
|
题目分析:
最小点对问题。所谓的最小点对问题就是,在n个点中找到2个点间的最短距离。这样的题有两种思路:
1)直接暴力。看一看数据规模,n都在100000左右了,O(n^2)的算法,不出意外,会TLE。
2)分治。
这道题用的是吉林大学的模板。直接套进去即可了。
与最小点对问题相应的是最大点对问题(不知道有没有这个名词,假设没有就当是我瞎编的吧。
所谓的最大点对问题,在我的定义里就是,在n个点中找到两个点之间的最大距离)。
可以产生最大距离的这两个点一定在凸包上。这时候我们仅仅要枚举凸包上的随意两个点即可。事实上这时候除了盲目枚举外,另一种更好的算法来解决问题——旋转卡壳算法。
代码例如以下:
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring> using namespace std; /**
* 求n个点中,2个点之间的最短距离。
* 1)直接暴力。 肯定会TLE
* 2)使用吉林大学的模板
*/
const int N = 100005;
const double MAX = 10e100, eps = 0.00001;
struct Point {
double x, y;
int index;
};
Point a[N], b[N], c[N];
double closest(Point *, Point *, Point *, int, int);
double dis(Point, Point);
int cmp_x(const void *, const void*);
int cmp_y(const void *, const void*);
int merge(Point *, Point *, int, int, int);
inline double min(double, double); int main(){
int n;
while(scanf("%d",&n)!=EOF,n){
int i;
for(i = 0 ; i < n ; ++i){
scanf("%lf %lf",&a[i].x,&a[i].y);
}
qsort(a,n,sizeof(a[0]),cmp_x);
for(i = 0 ; i < n ; ++i){
a[i].index = i;
} /**
* memcpy(目标地址,起始地址,n个字节)
* 作用:从起始地址拷贝n个字节到目标地址
* 头文件: 尽量把 <cstring>引入
*
*/
memcpy(b,a,n*sizeof(a[0])); qsort(b,n,sizeof(b[0]),cmp_y); double ans = closest(a,b,c,0,n-1); printf("%.2lf\n",ans/2);
} return 0;
} double closest(Point a[], Point b[], Point c[], int p, int q) {
if (q - p == 1){
return dis(a[p], a[q]);
}
if (q - p == 2) {
double x1 = dis(a[p], a[q]);
double x2 = dis(a[p + 1], a[q]);
double x3 = dis(a[p], a[p + 1]);
if (x1 < x2 && x1 < x3){
return x1;
}
else if (x2 < x3){
return x2;
}
else{
return x3;
}
}
int i, j, k, m = (p + q) / 2;
double d1, d2;
for (i = p, j = p, k = m + 1; i <= q; i++){
if (b[i].index <= m){
c[j++] = b[i];
}
// 数组c 左半部保存划分后左部的点, 且对y 是有序的.
else{
c[k++] = b[i];
}
}
d1 = closest(a, c, b, p, m);
d2 = closest(a, c, b, m + 1, q);
double dm = min(d1, d2);
// 数组c 左右部分各自是对y 坐标有序的, 将其合并到b.
merge(b, c, p, m, q);
for (i = p, k = p; i <= q; i++){
if (fabs(b[i].x - b[m].x) < dm){
c[k++] = b[i];
}
}
// 找出离划分基准左右不超过dm 的部分, 且仍然对y 坐标有序.
for (i = p; i < k; i++){
for (j = i + 1; j < k && c[j].y - c[i].y < dm; j++) {
double temp = dis(c[i], c[j]);
if (temp < dm){
dm = temp;
}
}
}
return dm;
}
double dis(Point p, Point q) {
double x1 = p.x - q.x, y1 = p.y - q.y;
return sqrt(x1 * x1 + y1 * y1);
}
int merge(Point p[], Point q[], int s, int m, int t) {
int i, j, k;
for (i = s, j = m + 1, k = s; i <= m && j <= t;) {
if (q[i].y > q[j].y){
p[k++] = q[j], j++;
}else{
p[k++] = q[i], i++;
}
}
while (i <= m){
p[k++] = q[i++];
}
while (j <= t){
p[k++] = q[j++];
} memcpy(q + s, p + s, (t - s + 1) * sizeof(p[0]));
return 0;
}
int cmp_x(const void *p, const void *q) {
double temp = ((Point*) p)->x - ((Point*) q)->x;
if (temp > 0){
return 1;
}
else if (fabs(temp) < eps){
return 0;
}
else{
return -1;
}
}
int cmp_y(const void *p, const void *q) {
double temp = ((Point*) p)->y - ((Point*) q)->y;
if (temp > 0){
return 1;
}
else if (fabs(temp) < eps){
return 0;
}
else{
return -1;
}
}
inline double min(double p, double q) {
return (p > q) ? (q) : (p);
}
(hdu 7.1.8)Quoit Design(最低点——在n一个点,发现两点之间的最小距离)的更多相关文章
- HDU 1007 Quoit Design(二分+浮点数精度控制)
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- HDU 1007 Quoit Design(经典最近点对问题)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...
- hdu 1007 Quoit Design (最近点对问题)
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- HDU 1007 Quoit Design【计算几何/分治/最近点对】
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- hdu 1007 Quoit Design 分治求最近点对
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- HDU 1007:Quoit Design(分治求最近点对)
http://acm.hdu.edu.cn/showproblem.php?pid=1007 题意:平面上有n个点,问最近的两个点之间的距离的一半是多少. 思路:用分治做.把整体分为左右两个部分,那么 ...
- ACM-计算几何之Quoit Design——hdu1007 zoj2107
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- Quoit Design(最近点对+分治)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...
- HDU1007 Quoit Design 【分治】
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
随机推荐
- Eclipse代码字体、颜色美化,更改字体大小、颜色
先看效果: 感觉如何,是否比你的eclipse编辑器显示的代码要漂亮简洁呢?呵呵.这个是我原来ADT Eclipse的效果,现在去下居然更新掉了,找不到了.于是我就参照我原来的配置对这个新的Eclip ...
- MongoDB -- 更新
$pull: db.collection.update( <query>, { $pull: { <arrayField>: <query2> } } ) $pul ...
- javascript启示录英文单词生词
odd:奇怪的 represent:代表 primitive:原始的 trivial:平凡的 demonstrate:证明 keep this at the forefront of your min ...
- java web从零单排第十六期《struts2》控制标签(2)
1.s:subset标签概述: s:subset标签功能是从一个集合中取出部分元素合并成一个新的集合,新生成的这个集合是原来集合的子集.属性和意义如下: 属性名 是否必需 默认值 类型 说明介绍 co ...
- cURL安装和使用笔记
0.前言 cURL是一个利用URL语法在命令行下工作的文件传输工具.它支持文件上传和下载,所以是综合传输工具,但习惯称cURL为下载工具.cURL还包含了用于程序开发的libcurl.cURL ...
- Flume+LOG4J+Kafka
基于Flume+LOG4J+Kafka的日志采集架构方案 本文将会介绍如何使用 Flume.log4j.Kafka进行规范的日志采集. Flume 基本概念 Flume是一个完善.强大的日志采集工具, ...
- 黑马程序员:Java基础总结----静态代理模式&动态代理
黑马程序员:Java基础总结 静态代理模式&动态代理 ASP.Net+Android+IO开发 . .Net培训 .期待与您交流! 静态代理模式 public class Ts { ...
- 智能手机的工业控制应用方案——SimpleWiFi在工业控制领域应用
智能手机的工业控制应用方案——SimpleWiFi在工业控制领域应用 先上图: 现在的智能控制都是基于微控制器,随着智能的手持终端的普及,基于智能终端的控制就会越来越普遍. WIFI便是其中的一 ...
- 开发指南专题4:JEECG高速微云开发平台--JEECG开发环境的搭建
开发指南专题4:JEECG微云高速开发平台开发环境搭建 1. JEECG开发环境搭建 JEECG推荐的开发环境为Myeclipse8.5/Eclipse3.7+JDK1.6+Tomcat6.0 1.1 ...
- hdu4405(概率dp)
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=4405 题意:跳棋有0~n个格子,每个格子X可以摇一次色子,色子有六面p(1=<p<=6), ...