主题:

Quoit Design

Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 136 Accepted Submission(s): 77
 
Problem Description
Have you ever played quoit in a playground? Quoit is a game in which flat rings are pitched at some toys, with all the toys encircled awarded.
In the field of Cyberground, the position of each toy is fixed, and the ring is carefully designed so it can only encircle one toy at a time. On the other hand, to make the game look more attractive, the ring is designed to have the largest radius. Given a configuration of the field, you are supposed to find the radius of such a ring.

Assume that all the toys are points on a plane. A point is encircled by the ring if the distance between the point and the center of the ring is strictly less than the radius of the ring. If two toys are placed at the same point, the radius of the ring is considered to be 0.

 
Input
The input consists of several test cases. For each case, the first line contains an integer N (2 <= N <= 100,000), the total number of toys in the field. Then N lines follow, each contains a pair of (x, y) which are the coordinates of a toy. The input is terminated by N = 0.
 
Output
For each test case, print in one line the radius of the ring required by the Cyberground manager, accurate up to 2 decimal places. 
 
Sample Input
2
0 0
1 1
2
1 1
1 1
3
-1.5 0
0 0
0 1.5
0
 
Sample Output
0.71
0.00
0.75
 
Author
CHEN, Yue
 
Source
ZJCPC2004
 
Recommend
JGShining

题目分析:

最小点对问题。所谓的最小点对问题就是,在n个点中找到2个点间的最短距离。这样的题有两种思路:

1)直接暴力。看一看数据规模,n都在100000左右了,O(n^2)的算法,不出意外,会TLE。

2)分治。

这道题用的是吉林大学的模板。直接套进去即可了。

与最小点对问题相应的是最大点对问题(不知道有没有这个名词,假设没有就当是我瞎编的吧。

所谓的最大点对问题,在我的定义里就是,在n个点中找到两个点之间的最大距离)。

可以产生最大距离的这两个点一定在凸包上。这时候我们仅仅要枚举凸包上的随意两个点即可。事实上这时候除了盲目枚举外,另一种更好的算法来解决问题——旋转卡壳算法。

代码例如以下:

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring> using namespace std; /**
* 求n个点中,2个点之间的最短距离。
* 1)直接暴力。 肯定会TLE
* 2)使用吉林大学的模板
*/
const int N = 100005;
const double MAX = 10e100, eps = 0.00001;
struct Point {
double x, y;
int index;
};
Point a[N], b[N], c[N];
double closest(Point *, Point *, Point *, int, int);
double dis(Point, Point);
int cmp_x(const void *, const void*);
int cmp_y(const void *, const void*);
int merge(Point *, Point *, int, int, int);
inline double min(double, double); int main(){
int n;
while(scanf("%d",&n)!=EOF,n){
int i;
for(i = 0 ; i < n ; ++i){
scanf("%lf %lf",&a[i].x,&a[i].y);
}
qsort(a,n,sizeof(a[0]),cmp_x);
for(i = 0 ; i < n ; ++i){
a[i].index = i;
} /**
* memcpy(目标地址,起始地址,n个字节)
* 作用:从起始地址拷贝n个字节到目标地址
* 头文件: 尽量把 <cstring>引入
*
*/
memcpy(b,a,n*sizeof(a[0])); qsort(b,n,sizeof(b[0]),cmp_y); double ans = closest(a,b,c,0,n-1); printf("%.2lf\n",ans/2);
} return 0;
} double closest(Point a[], Point b[], Point c[], int p, int q) {
if (q - p == 1){
return dis(a[p], a[q]);
}
if (q - p == 2) {
double x1 = dis(a[p], a[q]);
double x2 = dis(a[p + 1], a[q]);
double x3 = dis(a[p], a[p + 1]);
if (x1 < x2 && x1 < x3){
return x1;
}
else if (x2 < x3){
return x2;
}
else{
return x3;
}
}
int i, j, k, m = (p + q) / 2;
double d1, d2;
for (i = p, j = p, k = m + 1; i <= q; i++){
if (b[i].index <= m){
c[j++] = b[i];
}
// 数组c 左半部保存划分后左部的点, 且对y 是有序的.
else{
c[k++] = b[i];
}
}
d1 = closest(a, c, b, p, m);
d2 = closest(a, c, b, m + 1, q);
double dm = min(d1, d2);
// 数组c 左右部分各自是对y 坐标有序的, 将其合并到b.
merge(b, c, p, m, q);
for (i = p, k = p; i <= q; i++){
if (fabs(b[i].x - b[m].x) < dm){
c[k++] = b[i];
}
}
// 找出离划分基准左右不超过dm 的部分, 且仍然对y 坐标有序.
for (i = p; i < k; i++){
for (j = i + 1; j < k && c[j].y - c[i].y < dm; j++) {
double temp = dis(c[i], c[j]);
if (temp < dm){
dm = temp;
}
}
}
return dm;
}
double dis(Point p, Point q) {
double x1 = p.x - q.x, y1 = p.y - q.y;
return sqrt(x1 * x1 + y1 * y1);
}
int merge(Point p[], Point q[], int s, int m, int t) {
int i, j, k;
for (i = s, j = m + 1, k = s; i <= m && j <= t;) {
if (q[i].y > q[j].y){
p[k++] = q[j], j++;
}else{
p[k++] = q[i], i++;
}
}
while (i <= m){
p[k++] = q[i++];
}
while (j <= t){
p[k++] = q[j++];
} memcpy(q + s, p + s, (t - s + 1) * sizeof(p[0]));
return 0;
}
int cmp_x(const void *p, const void *q) {
double temp = ((Point*) p)->x - ((Point*) q)->x;
if (temp > 0){
return 1;
}
else if (fabs(temp) < eps){
return 0;
}
else{
return -1;
}
}
int cmp_y(const void *p, const void *q) {
double temp = ((Point*) p)->y - ((Point*) q)->y;
if (temp > 0){
return 1;
}
else if (fabs(temp) < eps){
return 0;
}
else{
return -1;
}
}
inline double min(double p, double q) {
return (p > q) ? (q) : (p);
}

(hdu 7.1.8)Quoit Design(最低点——在n一个点,发现两点之间的最小距离)的更多相关文章

  1. HDU 1007 Quoit Design(二分+浮点数精度控制)

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  2. HDU 1007 Quoit Design(经典最近点对问题)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...

  3. hdu 1007 Quoit Design (最近点对问题)

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  4. HDU 1007 Quoit Design【计算几何/分治/最近点对】

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  5. hdu 1007 Quoit Design 分治求最近点对

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  6. HDU 1007:Quoit Design(分治求最近点对)

    http://acm.hdu.edu.cn/showproblem.php?pid=1007 题意:平面上有n个点,问最近的两个点之间的距离的一半是多少. 思路:用分治做.把整体分为左右两个部分,那么 ...

  7. ACM-计算几何之Quoit Design——hdu1007 zoj2107

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  8. Quoit Design(最近点对+分治)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...

  9. HDU1007 Quoit Design 【分治】

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

随机推荐

  1. java面向对象下:Java数据库编程

    19.Java数据库编程: JDBC概述:        JDBC(Java Database Connection)是java中提供的一套数据库编程API,它定义了一套用来访问数据库的标准Java类 ...

  2. 与众不同 windows phone (26) - Contacts and Calendar(联系人和日历)

    原文:与众不同 windows phone (26) - Contacts and Calendar(联系人和日历) [索引页][源码下载] 与众不同 windows phone (26) - Con ...

  3. hdu 2055 An easy problem (java)

    问题: 開始尝试用字符做数组元素.可是并没实用. 在推断语句时把a z排出了. An easy problem Time Limit: 1000/1000 MS (Java/Others)    Me ...

  4. 用Feed43为随意站点定制RSS feed教程~

     用Feed43为随意站点定制RSS feed教程- Feed43--自己定义RSS种子的免费工具中笔者的最爱,确切来讲Feed43不适合心脏衰弱者.通过它的服务,我能够很好地控制种子的终于样式,当然 ...

  5. JAVA的extends使用方法

    理解继承是理解面向对象程序设计的关键.在Java中,通过keywordextends继承一个已有的类,被继承的类称为父类(超类,基类),新的类称为子类(派生类).在Java中不同意多继承. (1)继承 ...

  6. [Android学习笔记]组合控件的使用

    组合控件的使用 开发过程中,多个UI控件需要协同工作,相互交互之后,才可完成一个完整的业务需求,此时可把这些控件封装成为一个整体,相互之间的交互逻辑封装其中,外部调用可无需关心内部逻辑,只需获取处理后 ...

  7. 计算机视觉与模式识别代码合集第二版one

    Topic Name Reference code Feature Detection, Feature Extraction, and Action Recognition Space-Time I ...

  8. 开源工具DbUtils的使用(数据库的增删改查)

    开源工具DbUtils的使用(数据库的增删改查) 一.DbUtils简介: DBUtils是apache下的一个小巧的JDBC轻量级封装的工具包,其最核心的特性是结果集的封装,可以直接将查询出来的结果 ...

  9. svn经常使用命令具体解释(非常全,非常有用)

    ubuntu下安装subversionclient: sudo apt-getinstall subversion subversion-tools 1.检出 svn  co  http://路径(文 ...

  10. RCP开发中错误:java.lang.RuntimeException: WARNING: Prevented recursive attempt to activate part...

    在做RCP的eclipse插件开发时,启动管理软件界面时,总是报如下错误 : !ENTRY org.eclipse.ui.workbench 4 0 2012-05-25 18:44:21.306 ! ...