摘要: 作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处

业余时间调研了一下Kafka connect的配置和使用,记录一些自己的理解和心得,欢迎指正.

一.背景介绍

Kafka connect是Confluent公司(当时开发出Apache Kafka的核心团队成员出来创立的新公司)开发的confluent platform的核心功能.

大家都知道现在数据的ETL过程经常会选择kafka作为消息中间件应用在离线和实时的使用场景中,而kafka的数据上游和下游一直没有一个

无缝衔接的pipeline来实现统一,比如会选择flume或者logstash采集数据到kafka,然后kafka又通过其他方式pull或者push数据到目标存储.

而kafka connect旨在围绕kafka构建一个可伸缩的,可靠的数据流通道,通过kafka connect可以快速实现大量数据进出kafka从而和其

他源数据源或者目标数据源进行交互构造一个低延迟的数据pipeline.给个图更直观点,大家感受下.

二.Kafka-connect快速配置

这里Confluent官方很贴心的提供了一个集成的镜像以便quickstart,如下链接

https://s3-us-west-2.amazonaws.com/confluent-files/kafka_connect_blog.ova

这是存储在Amazon S3上的,直接点击即可下载.这里我使用VMWare直接打开,刚开始会提示一个错误,不用管它直接点击重试即可

系统加载的过程中会默认初始化虚拟机的网络配置,这里我建议提前设置好桥接网络,让该虚拟机使用桥接网络初始化.

加载成功后,登录进入该Ubuntu系统,默认的用户名和密码都是:vagrant.

然后ls查看vagrant用户目录,查看几个关键的脚本内容后,我分别介绍它们的功能

1>setup.sh:自动下载mysql,mysql jdbc driver,配置好mysql以及做为hive的metastore

2>start.sh:启动confluent platform,kafka,hadoop,hive相关服务

3>clean_up.sh:和start.sh相反的,会关闭掉所有的服务,而且还会删除掉所有的数据(例如hdfs namenode和 datanode的数据,其实相当于fs format了)

那么很明显,第一步肯定是执行setup.sh,这里执行后会报错如下

这里无法下载相关的软件包,好吧,那么我们需要更新一下下载源的索引,执行如下命令

sudo apt-get update

更新完毕后再次执行setup.sh安装好mysql,hive等服务

紧接着执行start.sh来启动上述服务,启动后应该有如下进程,这是一个伪分布式节点

对了,虚拟机各个服务(例如hive,zookeeper等),配置文件和日志文件在路径/mnt/下,组件的安装位置位于/opt下

三.Kafka connect快速使用

配置完以后就可以准备使用kafka-connect来快速构建一个数据pipeline了,如下图所示

整个过程是将数据以mysql作为数据源,将数据通过kafka connect快速ETL到hive中去.注意这里图中没画kafka

但是实际上是包含在kafka connect里面的,话不多说,开始使用

1>Mysql数据准备

执行如下命令

$ mysql -u root --password="mypassword"
mysql> CREATE DATABASE demo;
mysql> USE demo;
mysql> CREATE TABLE users (
-> id serial NOT NULL PRIMARY KEY,
-> name varchar(100),
-> email varchar(200),
-> department varchar(200),
-> modified timestamp default CURRENT_TIMESTAMP NOT NULL,
-> INDEX `modified_index` (`modified`)
-> );
mysql> INSERT INTO users (name, email, department) VALUES ('alice', 'alice@abc.com', 'engineering');
mysql> INSERT INTO users (name, email, department) VALUES ('bob', 'bob@abc.com', 'sales');
mysql> exit;

注意上面第一行,--password="mypassword" ,对,你没看错,这里虚拟机mysql的root默认密码就是mypassword,

强迫症患者请自行更改.随后建库,建表,插入数据.

2>关键概念准备

这里我快速普及一下参考官方文档理解的一些关键概念.

kafka connector:kafka connector是kafka connect的关键组成部分,它是一个逻辑上的job,用于在kafka和其他系统之间拷贝数据,比如

从上游系统拷贝数据到kafka,或者从kafka拷贝数据到下游系统

Tasks:每个kafka connector可以初始化一组task进行数据的拷贝

Workers:逻辑上包含kafka connector和tasks用来调度执行具体任务的进程,具体执行时分为standalone模式和distributed模式

见下图,这个是kafka上游的数据stream过来后,定义好对应的kafka connector后,分解为一组tasks然后push数据到kafka的不同topic

3>利用Kafka-connect摄取数据

主要是通过配置来实现从mysql摄取数据到kafka,然后按照topic来获取数据写入hdfs,命令如下

connect-standalone /mnt/etc/connect-avro-standalone.properties \
/mnt/etc/mysql.properties /mnt/etc/hdfs.properties &

注意上面这些properties文件是虚拟机已经事先配置好的,可以直接执行实现数据的摄取

当前使用的kafka connect的standalone模式,当然还有distributed模式后续可以尝试

上面的那条命令的格式是这样:

connect-standalone worker.properties connector1.properties [connector2.properties connector3.properties ...]

主要解释一下connect-standalone后面的参数

worker.properties:就是上面提到过的worker进程的配置文件,可以定义kafka cluster的相关信息以及数据序列化的格式.

随后的一些参数就是kafka connector的配置参数了,比如上面的mysql.properties定义了一个kafka jdbc connector,用来同步mysql数据到kafka

最后一个hdfs.properties是kafka hdfs connector的配置文件,用来消费kafka topic数据push到hdfs.

那么执行这条命令后就可以将mysql的数据通过kafka connect快速ETL到hdfs了.

最后可以通过hive创建外表映射hdfs上的数据文件,然后在hive中查看对应数据,如下

$ hive
hive> SHOW TABLES;
OK
test_jdbc_users
hive> SELECT * FROM test_jdbc_users;
OK
1 alice alice@abc.com engineering 1450305345000
2 bob bob@abc.com sales 1450305346000

四.Kafka connect使用总结

1>Kafka connect的使用其实就是配置不同的kafka connectors,这里大家可以把kafka作为中间组件,然后可以类比flume理解,kafka上游的

connector其实就是fllume的source从上游数据源sink到kafka,kafka的下游connector其实就是flume的source是kafka,sink到下游系统.

2>Kafka connect的数据pipeline要打通,它要求数据遵守confluent自己的一套通用的schema机制,细心的同学会发现上面jps后会有个进程名

SchemaRegistryMain,这里官方默认使用Avro格式进出Kafka,所以要留意worker.properties文件的配置信息.

3>我在使用中没有发现Flume 相关的connector,因此很好奇它应该是没有实现上游flume conector的属性配置。问题应该出在Flume的数据是基

于event的,而和上面2中所说的schema定义格式没有很好的兼容.

4>kafka connect的distributed模式应该更实用,随后会尝试,以及confluent所支持的实时处理流kafka streams.

参考资料:http://docs.confluent.io/2.0.0/platform.html

Kafka connect快速构建数据ETL通道的更多相关文章

  1. 以Kafka Connect作为实时数据集成平台的基础架构有什么优势?

    Kafka Connect是一种用于在Kafka和其他系统之间可扩展的.可靠的流式传输数据的工具,可以更快捷和简单地将大量数据集合移入和移出Kafka的连接器.Kafka Connect为DataPi ...

  2. 使用kafka connect,将数据批量写到hdfs完整过程

    版权声明:本文为博主原创文章,未经博主允许不得转载 本文是基于hadoop 2.7.1,以及kafka 0.11.0.0.kafka-connect是以单节点模式运行,即standalone. 首先, ...

  3. SQL Server CDC配合Kafka Connect监听数据变化

    写在前面 好久没更新Blog了,从CRUD Boy转型大数据开发,拉宽了不少的知识面,从今年年初开始筹备.组建.招兵买马,到现在稳定开搞中,期间踏过无数的火坑,也许除了这篇还很写上三四篇. 进入主题, ...

  4. 打造实时数据集成平台——DataPipeline基于Kafka Connect的应用实践

    导读:传统ETL方案让企业难以承受数据集成之重,基于Kafka Connect构建的新型实时数据集成平台被寄予厚望. 在4月21日的Kafka Beijing Meetup第四场活动上,DataPip ...

  5. Apache Kafka Connect - 2019完整指南

    今天,我们将讨论Apache Kafka Connect.此Kafka Connect文章包含有关Kafka Connector类型的信息,Kafka Connect的功能和限制.此外,我们将了解Ka ...

  6. Kafka Connect Architecture

    Kafka Connect's goal of copying data between systems has been tackled by a variety of frameworks, ma ...

  7. 基于Kafka Connect框架DataPipeline在实时数据集成上做了哪些提升?

    在不断满足当前企业客户数据集成需求的同时,DataPipeline也基于Kafka Connect 框架做了很多非常重要的提升. 1. 系统架构层面. DataPipeline引入DataPipeli ...

  8. Kafka笔记7(构建数据管道)

    构建数据管道需要考虑的问题: 及时性  可靠性 高吞吐量和动态吞吐量   数据格式  转换    安全性   故障处理能力  耦合性与灵活性 数据管道的构建分为2个阵营,ETL和ELT ETL:提取- ...

  9. 使用Asp.net WebAPI 快速构建后台数据接口

    现在的互联网应用,无论是web应用,还是移动APP,基本都需要实现非常多的数据访问接口.其实对一些轻应用来说Asp.net WebAPI是一个很快捷简单并且易于维护的后台数据接口框架.下面我们来快速构 ...

随机推荐

  1. CSS移动

    #hand { width: 170px; height: 236px; position: absolute; top: 178px; left: 390px; background: url('h ...

  2. 【SSRS】入门篇(六) -- 分组和总计

    原文:[SSRS]入门篇(六) -- 分组和总计 通过[SSRS]入门篇(五) -- 设置报表格式的设计,一份简单格式的报表已产生,如下图: 这节来说说分组和总计: 根据日期.订单对数据进行分组 添加 ...

  3. python进程池剖析(一)

    python中两个常用来处理进程的模块分别是subprocess和multiprocessing,其中subprocess通常用于执行外部程序,比如一些第三方应用程序,而不是Python程序.如果需要 ...

  4. Android项目---ActivityGroup的使用

    ActivityGroup在一年前已经被说明不用了,但是腾讯QQ,新浪微博上也不乏ActivityGroup的身影.所以,即使是过时的东西,也有学习的必要,当然项目中也是可以添加的.在网上找了一个博客 ...

  5. python学习之路四(类和对象1)

    #encoding:utf-8 ''' Created on 2013-7-29 @author: lixingle ''' #CLass............................... ...

  6. 如何避免误用分布式事务(System.Transactions.TransactionScope)

    以下内容来源与:http://www.cyqdata.com/cyq1162/article-detail-54453 1:本地事务DbTransaction和分布式事务TransactionScop ...

  7. c语言,求字符数组的长度

    练手代码,适用初级码农: #include<stdlib.h> #include<stdio.h> #include<assert.h> int count(con ...

  8. C#山寨版本拨号客户端

    C#山寨版本[天翼拨号客户端]---内含详细抓包,模拟数据---万事俱备,只欠东风.   本帖子本来最初是发在CSDN上的,回复的也有十几个,但没有一个有技术含量的回复....特来此讨论,请教,请各位 ...

  9. Java笔记:抽象类、接口

    这篇笔记主要是抽象类和接口,还有简单介绍下三种设计模式:模板模式.工厂模式.命令模式 1.抽象方法和抽象类(1)抽象方法和抽象类都必须使用abstract修饰符来定义,包含抽象方法的类只能被定义成抽象 ...

  10. JavaEE:Cookie和Session

    Cookie是客户端技术,程序把每个用户的数据以cookie的形式写给用户各自的浏览器.当用户使用浏览器再去访问服务器中的web资源时,就会带着各自的数据去.这样web资源处理的就是用户各自的数据了. ...