UVa 10911 - Forming Quiz Teams
题目大意:给出2*n个点,将这些点配成n对,使得所有点对中两点的距离之和尽量小。
用一个整数的二进制形式表示一个集合的子集,以每个集合为状态进行状态转移。具体参见《算法竞赛入门经典》9.5。
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cfloat>
using namespace std; struct Point
{
int x, y;
} point[];
double dp[<<+]; double dis(int a, int b)
{
int x_diff = point[a].x - point[b].x;
int y_diff = point[a].y - point[b].y;
return sqrt(x_diff * x_diff + y_diff * y_diff);
} int main()
{
#ifdef LOCAL
freopen("in", "r", stdin);
#endif
int n, kase = ;
char name[];
while (scanf("%d", &n) && n)
{
n *= ;
for (int i = ; i < n; i++)
scanf("%s%d%d", name, &point[i].x, &point[i].y);
dp[] = ;
for (int s = ; s < (<<n); s++)
{
dp[s] = DBL_MAX;
int p = ;
for ( ; p < n; p++)
if (s & (<<p)) break;
for (int i = p+; i < n; i++)
if (s & (<<i))
dp[s] = min(dp[s], dis(p, i)+dp[s^(<<p)^(<<i)]);
}
printf("Case %d: %.2lf\n", ++kase, dp[(<<n)-]);
}
return ;
}
UVa 10911 - Forming Quiz Teams的更多相关文章
- uva 10911 - Forming Quiz Teams(记忆化搜索)
题目链接:10911 - Forming Quiz Teams 题目大意:给出2 * n个选手的坐标, 要求将所有的选手分成n组, 每组两个人, 所有组的两个人之间的距离之和要最小, 输出最小值. 解 ...
- UVA 10911 Forming Quiz Teams(dp + 集合最优配对问题)
4th IIUC Inter-University Programming Contest, 2005 G Forming Quiz Teams Input: standard input Outpu ...
- 集合上的动态规划---最优配对问题(推荐:*****) // uva 10911
/* 提醒推荐:五星 刘汝佳<算法竞赛入门经典>,集合上的动态规划---最优配对问题 题意:空间里有n个点P0,P1,...,Pn-1,你的任务是把它们配成n/2对(n是偶数),使得每个点 ...
- UVa 11609 (计数 公式推导) Teams
n个人里选k个人有C(n, k)中方法,再从里面选一人当队长,有k中方法. 所以答案就是 第一步的变形只要按照组合数公式展开把n提出来即可. #include <cstdio> typed ...
- UVA题目分类
题目 Volume 0. Getting Started 开始10055 - Hashmat the Brave Warrior 10071 - Back to High School Physics ...
- 算法入门经典大赛 Dynamic Programming
111 - History Grading LCS 103 - Stacking Boxes 最多能叠多少个box DAG最长路 10405 - Longest Common Subsequence ...
- Codeforces 552 E. Two Teams
E. Two Teams time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...
- Root :: AOAPC I: Beginning Algorithm Contests (Rujia Liu) Volume 5. Dynamic Programming
10192 最长公共子序列 http://uva.onlinejudge.org/index.php?option=com_onlinejudge& Itemid=8&page=sho ...
- SPOJ:Harbinger vs Sciencepal(分配问题&不错的DP&bitset优化)
Rainbow 6 is a very popular game in colleges. There are 2 teams, each having some members and the 2 ...
随机推荐
- HDU 1814 Peaceful Commission
2-SAT,输出字典序最小的解,白书模板. //TwoSAT输出字典序最小的解的模板 //注意:0,1是一组,1,2是一组..... #include<cstdio> #include&l ...
- 9、外观模式(Facade)
外观模式是为了解决类与类之家的依赖关系的,像spring一样,可以将类和类之间的关系配置到配置文件中,而外观模式就是将他们的关系放在一个Facade类中,降低了类类之间的耦合度,该模式中没有涉及到接口 ...
- CGI接口原理及实现(转载)
原文:http://blog.csdn.net/duola_rain/article/details/15812585 CGI接口原理及实现(2012-12-7 Over) 1.CGI定义: CGI( ...
- docker安装hadoop
docker为hadoop的云化带来了极大便利,安装和应用也会更快更方便.进入正题: docker search hadoop 将会看到如下结果: INDEX NAME DESCRIPTION STA ...
- Popular Products
Popular Products 描述 Given N lists of customer purchase, your task is to find the products that appea ...
- ExtJS的4.1新特性简要介绍
ExtJS的4.1新特性简要介绍 一.动态加载机制 Ext.require动态加载任何类,并且会加载依赖类: 二.新类系统 •类定义:ExtJS4.0以后应入了Ext.define方法,他通过类的字符 ...
- urllib2修改header
python网络访问的标准模块 urllib与urllib2并不是升级版的关系,具体可见谷歌文章:difference between urllib and urllib2urllib2的官方文档:h ...
- JavaScript中call,apply,bind方法的总结
原文链接:http://www.cnblogs.com/pssp/p/5215621.html why?call,apply,bind干什么的?为什么要学这个? 一般用来指定this的环境,在没有学之 ...
- (困难) CF 484E Sign on Fence,整体二分+线段树
Bizon the Champion has recently finished painting his wood fence. The fence consists of a sequence o ...
- ural1090 In the Army Now
In the Army Now Time limit: 1.0 secondMemory limit: 64 MB The sergeant ordered that all the recruits ...