对于CNN输入的数据,常见的有三种处理方式:

1.Mean subtraction.  将数据的每一维特征都减去平均值。在numpy 中 X -= np.mean(X, axis = 0)

2.Normalization  归一化数据,使数据在相同尺度。 在numpy 中 X /= np.std(X, axis = 0)

3. PCA and Whitening.  首先均值化数据,然后求协方差矩阵。
      X -= np.mean(X, axis = 0) //求均值

cov = np.dot( X.T, X) / X.shape[0] // 求协方差矩阵

U,S,V = np.linalg.svd(cov) //奇异值分解,其中 U 为特征向量,S为奇异值分解向量为特征向量的平方

Xrot = np.dot(X, U) //去除数据相关性

Xrot_reduced = np.dot(X, U[:,:100]) 降维到 100 维

Xwhite = Xrot / np. sqrt(s + 1e-5) //白化数据 1e-5 为防止除0

可视化数据:例子为CIFAR-10  images

左边第一张图片为CIFAR-10 中的49张图片(每张图片有3072个特征),第二张图片为3072特征向量中的前144个特征,第三张图片为通过PCA降维降到144维,使用的是图二中的前144维,第四张图片为白化后的图片。

常见的数据处理是 Mean substraction 和 Normalization.

权重的设置

陷阱:全零初始化  如果参数是全零,导致输出的结果相同,那么通过反向传播计算梯度也相同,那么参数也不会更新。

用较小的数随机化: W = 0.01*  np.random.randn(D,H) randn 返回的样本满足标准正态分布.

标准化变量 1/sqrt(n)  W = np.random.randn(n) / sqrt(n)  或者 W = np.random.randn(n) / sqrt(2.0/n)

  初始化偏置项

很常见的是将偏置项设置为0,ReLu 激活函数有些人会设置为 0.01, 在实际中通常设置为 W =  np. random.randn(n) * sqrt(2.0/n)

Batch Normalization 

发现一个讲解Batch Normalization 的博客 详见http://blog.csdn.net/hjimce/article/details/50866313

正则化

 有多种方法来防止神经网络的过拟合。

L2 范式 w = w + 1/2 λw2  

L1 范式 w = w + λ|w|  向量各元素绝对值之和

L1会趋向于产生少量的特征,而其他的特征都是0,而L2会选择更多的特征,这些特征都会接近于0

Dropout 

Dropout是指在模型训练时随机让网络某些隐含层节点的权重不工作,不工作的那些节点可以暂时认为不是网络结构的一部分,但是它的权重得保留下来(只是暂时不更新而已),因为下次样本输入时它可能又得工作了。如下图所示

主要参考CS231n 课程。

CNN- 数据预处理的更多相关文章

  1. 【深度学习系列】PaddlePaddle之数据预处理

    上篇文章讲了卷积神经网络的基本知识,本来这篇文章准备继续深入讲CNN的相关知识和手写CNN,但是有很多同学跟我发邮件或私信问我关于PaddlePaddle如何读取数据.做数据预处理相关的内容.网上看的 ...

  2. 借助 SIMD 数据布局模板和数据预处理提高 SIMD 在动画中的使用效率

    原文链接 简介 为发挥 SIMD1 的最大作用,除了对其进行矢量化处理2外,我们还需作出其他努力.可以尝试为循环添加 #pragma omp simd3,查看编译器是否成功进行矢量化,如果性能有所提升 ...

  3. R语言进行数据预处理wranging

    R语言进行数据预处理wranging li_volleyball 2016年3月22日 data wrangling with R packages:tidyr dplyr Ground rules ...

  4. Scikit-Learn模块学习笔记——数据预处理模块preprocessing

    preprocessing 模块提供了数据预处理函数和预处理类,预处理类主要是为了方便添加到 pipeline 过程中. 数据标准化 标准化预处理函数: preprocessing.scale(X, ...

  5. Deep Learning 11_深度学习UFLDL教程:数据预处理(斯坦福大学深度学习教程)

    理论知识:UFLDL数据预处理和http://www.cnblogs.com/tornadomeet/archive/2013/04/20/3033149.html 数据预处理是深度学习中非常重要的一 ...

  6. R语言--数据预处理

    一.日期时间.字符串的处理 日期 Date: 日期类,年与日 POSIXct: 日期时间类,精确到秒,用数字表示 POSIXlt: 日期时间类,精确到秒,用列表表示 Sys.date(), date( ...

  7. weka数据预处理

    Weka数据预处理(一) 对于数据挖掘而言,我们往往仅关注实质性的挖掘算法,如分类.聚类.关联规则等,而忽视待挖掘数据的质量,但是高质量的数据才能产生高质量的挖掘结果,否则只有"Garbag ...

  8. 对数据预处理的一点理解[ZZ]

    数据预处理没有统一的标准,只能说是根据不同类型的分析数据和业务需求,在对数据特性做了充分的理解之后,再选择相关的数据预处理技术,一般会用到多种预处理技术,而且对每种处理之后的效果做些分析对比,这里面经 ...

  9. Python数据预处理—归一化,标准化,正则化

    关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常用的 ...

  10. sklearn数据预处理-scale

    对数据按列属性进行scale处理后,每列的数据均值变成0,标准差变为1.可通过下面的例子加深理解: from sklearn import preprocessing import numpy as ...

随机推荐

  1. [RM 状态机详解4] RMNode状态机详解

    摘要 RMNode状态机是ResourceManager的四个状态机(RMApp,RMAppAttempt,RMContainer,RMNode)中最简单的一个,状态机如图1所示.RMNode是Res ...

  2. 前端css:“圣杯布局”

    昨天面试前端,一面危险通过,面试官建议我看看“圣杯布局”,听起来很玄妙的名字,花了一晚上弄明白怎么回事,惊讶于前端工作的细节和技巧! 我先看几个基础,在后面要用到的: 1.CSS right/left ...

  3. iOS蓝牙调用的一般流程

    一.服务端(也叫周边设备吧..脑残的翻译) 1.实现类必须遵守协议 CBPeripheralManagerDelegate 2.需要的主要类有: @property(strong,nonatomic) ...

  4. 微信移动支付V3开发详细教程服务端采用.net mvc webapi(C#)

    转自:http://www.kwstu.com/ArticleView/netmvc_201511132050268716 最近开发手机app需要实现移动支付功能,由于考虑支付安全将微信支付生成签名写 ...

  5. JUC.Condition学习

    JUC.Condition学习笔记[附详细源码解析] 目录 Condition的概念 大体实现流程 I.初始化状态 II.await()操作 III.signal()操作 3个主要方法 Conditi ...

  6. T-SQL查询语句(三):多表查询

    SQL查询语句<三>:多表查询 (也叫连接查询,此处为基于两个表的连接查询)如果一个查询需要对多个表进行操作就称为连接查询,连接查询的结果集或结果称为表之间的连接.连接查询实际上是通过各个 ...

  7. img onerror事件

    怪自己知道的太少,img标签有onerror这个事件,我是才刚知道,恕我愚昧,既然是第一次遇到,而且又是一个自己从没有涉及过得的东西,所以我希望通过这个随笔来是自己印象深刻,此文仅仅只是让自己印象深刻 ...

  8. Arduino live weather broadcasting 实时天气站

    Live broadcasting with arduino get a pc , make it run linux. make arduino catch the weather sensor a ...

  9. 搭建WEB邮件系统,爆强!

    Linux+postfix+extmail+dovecot打造基于web页面的邮件系统 原文地址: http://blog.csdn.net/deansrk/article/details/67177 ...

  10. Android ListView多布局讲解

    Listview优化是一个老生常谈的事情了,其优化的方面也有很多种,例如,布局重用.在getView()中减少逻辑计算.减少在页面滑动的时候加在图片,而是在页面停止滚动的时候再加在图片.而今天要介绍的 ...