《Semantic Sentence Matching with Densely-connected Recurrent and Co-attentive Information》DRCN 句子匹配
模型结构
首先是模型图:
传统的注意力机制无法保存多层原始的特征,根据DenseNet的启发,作者将循环网络的隐层的输出与最后一层连接。
另外加入注意力机制,代替原来的卷积。由于最后的特征维度过大,加入AE降维。
Word Representation Layer
层
自然语言的任务首先就是输入层,对每个词的one-hot表示进行embedding,
这几个公式很好理解,首先作者将词的embedding分为两部分,一部分参与训练,即EtrEtr,另一部分是固定不动的,即EfixEfix,
cp: 然后就是词级别的表示char-Conv,具体是:char -embeding --> conv---> maxpooling --->vector ,卷积的参数是可训练的。
fp: exact match的匹配特征,主要是a中的每个词是否在b中有对应的词
最后后将这些表示拼接起来,就得到了每个词的最后表示。
Densely connected Recurrent Networks
密集连接层
在这一层,作者收DenseNet启发,使用了密集连接和RNN结合的方法来实现对对句子的处理。首先hlthtl表示的是第l层的RNN的第t的隐层状态,

公式3是传统的多层RNN的结构,前一层的RNN的 隐层状态作为当前层的输入,然后就是RNN的计算方式,
公式4 借鉴了残差网络,当前层的输入不仅包含了前一层的隐层状态,同时包含了前一层的输入,但他们是相加的方式,作者认为这种相加的形式很可能会阻碍信息的流动,
公式5 因此借鉴DenseNet,作者使用了拼接了方式,这样不仅保留了两部分信息,同时拼接方法也最大程度的保留了各自的独有信息。但这就有一个问题了,多层的RNN的参数就不一样了,因为拼接的方式导致了每一层输入对应的参数规模是在不断变大的,这样就不能做的很深了。
Densely-connected Co-attentive networks
密集连接注意力
因为句子匹配考虑的两个句子之间关系,因此需要建模两个句子之间的交互,目前来说,注意力机制是一种非常好的方法,因此作者在这样也使用了注意力机制,在RNN的每一层使用soft-alignment
,最后将权重通过拼接加入到全连接,避免信息的丢失。
这个就是传统的co-attention计算方法,计算两个序列之间的在每个词上的对应关系,不过作者这里比较粗暴,直接使用了余弦相似度来计算每两个词之间的相似,这里也可以使用一个简单的MLP来计算。有意思的地方在下边

这个就很有意思了,我们传统的做法是得到每个词在对方句子上的概率分布之后,使用对方句子中每个词向量的加权和作为当前词的向量表示,而这里作者直接使用了计算出来的权值分布,将其作为一个特征引入到当前层的输入当中,这个感觉还是很有意思的。
Bottleneck component
瓶颈处理层
正如前边提到的,这种dense连接方式直接导致的一个问题就是随着模型的加深,参数量会变的越来越多,这样最后全连接层的压力就会特别大。因此作者在这里使用了一个AutoEncoder来解决这个问题。AutoEncoder可以帮助压缩得到的巨大向量表示,同时可以保持原始的信息。我个人感觉就是一个全连接层吧。从论文附录的实现细节来看。
分类层
这是处理两个句子关系常用的一种匹配方法,作拼接,相减,点乘,不过作者在这里也是用了相减的绝对值,然后将最终拼接的向量通过一个全连接层,然后根据任务进行softmax分类
实验结果
照例,上图,作者在NLI任务和Question Pair两个任务上进行了模型验证,效果当然是十分不错的。
感想
0、词向量的表示上,
1、将DenseNet的一些想法引入到了stack RNN中,
2、从残差连接到DenseNet,
3、注意力权值的使用方法,
4、利用AutoEncoder来压缩向量。
参考:
https://blog.csdn.net/u013398398/article/details/81463343
https://www.paperweekly.site/papers/notes/436
https://blog.csdn.net/xiayto/article/details/81247461
《Semantic Sentence Matching with Densely-connected Recurrent and Co-attentive Information》DRCN 句子匹配的更多相关文章
- 【文献阅读】Densely Connected Convolutional Networks-best paper-CVPR-2017
Densely Connected Convolutional Networks,CVPR-2017-best paper之一(共两篇,另外一篇是apple关于GAN的paper),早在去年八月 De ...
- Densely Connected Convolutional Networks 论文阅读
毕设终于告一段落,传统方法的视觉做得我整个人都很奔溃,终于结束,可以看些搁置很久的一些论文了,嘤嘤嘤 Densely Connected Convolutional Networks 其实很早就出来了 ...
- 【Network Architecture】Densely Connected Convolutional Networks 论文解析
目录 0. Paper link 1. Overview 2. DenseNet Architecture 2.1 Analogy to ResNet 2.2 Composite function 2 ...
- Deep Learning 33:读论文“Densely Connected Convolutional Networks”-------DenseNet 简单理解
一.读前说明 1.论文"Densely Connected Convolutional Networks"是现在为止效果最好的CNN架构,比Resnet还好,有必要学习一下它为什么 ...
- 深度学习论文翻译解析(十五):Densely Connected Convolutional Networks
论文标题:Densely Connected Convolutional Networks 论文作者:Gao Huang Zhuang Liu Laurens van der Maaten Kili ...
- 《Bilateral Multi-Perspective Matching for Natural Language Sentences》(句子匹配)
问题: Natural language sentence matching (NLSM),自然语言句子匹配,是指比较两个句子并判断句子间关系,是许多任务的一项基本技术.针对NLSM任务,目前有两种流 ...
- 《Convolutional Neural Network Architectures for Matching Natural Language Sentences》句子匹配
模型结构与原理 1. 基于CNN的句子建模 这篇论文主要针对的是句子匹配(Sentence Matching)的问题,但是基础问题仍然是句子建模.首先,文中提出了一种基于CNN的句子建模网络,如下图: ...
- Densely Connected Convolutional Networks(緊密相連卷積網絡)
- Dense blocks where each layer is connected to every other layer in feedforward fashion(緊密塊是指每一個層與每 ...
- DenseNet——Densely Connected Convolutional Networks
1. 摘要 传统的 L 层神经网络只有 L 个连接,DenseNet 的结构则有 L(L+1)/2 个连接,每一层都和前面的所有层进行连接,所以称之为密集连接的网络. 针对每一层网络,其前面所有层的特 ...
随机推荐
- 使用UMDH查找内存泄露
参考文献: 1.http://blog.csdn.net/wcjy07220114/article/details/6962140 2.http://blog.csdn.net/chenyujing1 ...
- Blender 使用
教程: 1.https://www.youtube.com/watch?v=N8-mE-165b8&index=7&list=PLE885296A496C3D38 快捷键: http: ...
- 内核poll机制
内核版本:linux2.6.22.6 硬件平台:JZ2440 驱动源码 poll_key_int_drv.c : #include <linux/module.h> #include &l ...
- python处理csv文档
在工作中遇到了使用python解析csv文件的问题,包括读写操作,下面参考官网文档,进行一下总结: 首先CSV (Comma Separated Values) ,也就是逗号分开的数值,可以用Note ...
- (1.14)mysql锁问题之MyIsam
1.mysql锁概述 BDB被InnoDB代替了,MyIsam在8.0也被抛弃了 2.MyIsam表锁(读写是串行的) [2.1]查看表锁争用情况. MyIsam存储引擎只支持表锁. 查看表锁争用情况 ...
- 20170811 使用Bootstrap框架写个页面
采用Bootstrap-table 做的页面. 1. 增加Query 查询功能,涉及Ajax 来加载页面数据吧! <meta charset="UTF-8"> < ...
- 001-dubbo基础-001-服务化最佳实践、异常处理逻辑
1.参看地址 http://dubbo.apache.org/zh-cn/ 2.服务化最佳实践 分包 建议将服务接口.服务模型.服务异常等均放在 API 包中,因为服务模型和异常也是 API 的一部分 ...
- 根据构建类型动态设置AndroidManifest.xml文件中的meta-data
当debug和release版本使用不同的值时,使用Gradle设置相应的值. Android主配置文件 <meta-data android:name="com.amap.api.v ...
- hash值重写,就是以自己定义的规则来显示hash值
未重写hashCode值 重写hashCode后的值
- iot平台在k8s搭建过程
统一在 cd /opt/iot nohup /opt/iopservices.sh >/var/log/helmapi.log & 直接查看pod日志? kubectl logs i ...