B+树索引和哈希索引的区别[转]
导读
在MySQL里常用的索引数据结构有B+树索引和哈希索引两种,我们来看下这两种索引数据结构的区别及其不同的应用建议。
二者区别
备注:先说下,在MySQL文档里,实际上是把B+树索引写成了BTREE,例如像下面这样的写法:
CREATE TABLE t(
aid int unsigned not null auto_increment,
userid int unsigned not null default 0,
username varchar(20) not null default ‘’,
detail varchar(255) not null default ‘’,
primary key(aid),
unique key(uid) USING BTREE,
key (username(12)) USING BTREE — 此处 uname 列只创建了最左12个字符长度的部分索引
)engine=InnoDB;
一个经典的B+树索引数据结构见下图:
(图片源自网络)
B+树是一个平衡的多叉树,从根节点到每个叶子节点的高度差值不超过1,而且同层级的节点间有指针相互链接。
在B+树上的常规检索,从根节点到叶子节点的搜索效率基本相当,不会出现大幅波动,而且基于索引的顺序扫描时,也可以利用双向指针快速左右移动,效率非常高。
因此,B+树索引被广泛应用于数据库、文件系统等场景。顺便说一下,xfs文件系统比ext3/ext4效率高很多的原因之一就是,它的文件及目录索引结构全部采用B+树索引,而ext3/ext4的文件目录结构则采用Linked list, hashed B-tree、Extents/Bitmap等索引数据结构,因此在高I/O压力下,其IOPS能力不如xfs。
详细可参见:
https://en.wikipedia.org/wiki/Ext4
https://en.wikipedia.org/wiki/XFS
而哈希索引的示意图则是这样的:
(图片源自网络)
简单地说,哈希索引就是采用一定的哈希算法,把键值换算成新的哈希值,检索时不需要类似B+树那样从根节点到叶子节点逐级查找,只需一次哈希算法即可立刻定位到相应的位置,速度非常快。
从上面的图来看,B+树索引和哈希索引的明显区别是:
- 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;
- 从示意图中也能看到,如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;
- 同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);
- 哈希索引也不支持多列联合索引的最左匹配规则;
- B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。
后记
在MySQL中,只有HEAP/MEMORY引擎表才能显式支持哈希索引(NDB也支持,但这个不常用),InnoDB引擎的自适应哈希索引(adaptive hash index)不在此列,因为这不是创建索引时可指定的。
还需要注意到:HEAP/MEMORY引擎表在mysql实例重启后,数据会丢失。
通常,B+树索引结构适用于绝大多数场景,像下面这种场景用哈希索引才更有优势:
在HEAP表中,如果存储的数据重复度很低(也就是说基数很大),对该列数据以等值查询为主,没有范围查询、没有排序的时候,特别适合采用哈希索引
例如这种SQL:
SELECT … FROM t WHERE C1 = ?; — 仅等值查询
在大多数场景下,都会有范围查询、排序、分组等查询特征,用B+树索引就可以了。
http://imysql.com/2016/01/06/mysql-faq-different-between-btree-and-hash-index.shtml
B+树索引和哈希索引的区别[转]的更多相关文章
- B+树索引和哈希索引的区别——我在想全文搜索引擎为啥不用hash索引而非得使用B+呢?
哈希文件也称为散列文件,是利用哈希存储方式组织的文件,亦称为直接存取文件.它类似于哈希表,即根据文件中关键字的特点,设计一个哈希函数和处理冲突的方法,将记录哈希到存储设备上. 在哈希文件中,是使用一个 ...
- MySQL B+树索引和哈希索引的区别
导读 在MySQL里常用的索引数据结构有B+树索引和哈希索引两种,我们来看下这两种索引数据结构的区别及其不同的应用建议. 二者区别 备注:先说下,在MySQL文档里,实际上是把B+树索引写成了BT ...
- MySQL B+树索引和哈希索引的区别(转 JD二面)
导读 在MySQL里常用的索引数据结构有B+树索引和哈希索引两种,我们来看下这两种索引数据结构的区别及其不同的应用建议. 二者区别 备注:先说下,在MySQL文档里,实际上是把B+树索引写成了BTRE ...
- mysql索引之一:索引基础(B-Tree索引、哈希索引、聚簇索引、全文(Full-text)索引区别)(唯一索引、最左前缀索引、前缀索引、多列索引)
没有索引时mysql是如何查询到数据的 索引对查询的速度有着至关重要的影响,理解索引也是进行数据库性能调优的起点.考虑如下情况,假设数据库中一个表有10^6条记录,DBMS的页面大小为4K,并存储10 ...
- mysql索引之哈希索引
哈希算法 哈希算法时间复杂度为O(1),且不只存在于索引中,每个数据库应用中都存在该数据结构. 哈希表 哈希表也为散列表,又直接寻址改进而来.在哈希的方式下,一个元素k处于h(k)中,即利用哈希函数h ...
- B+树索引和哈希索引的明显区别是:
如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值:当然了,这个前提是,键值都是唯一的.如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到 ...
- mysql索引是什么?索引结构和使用详解
索引是什么 mysql索引: 是一种帮助mysql高效的获取数据的数据结构,这些数据结构以某种方式引用数据,这种结构就是索引.可简单理解为排好序的快速查找数据结构.如果要查“mysql”这个单词,我们 ...
- MySQL索引(一)索引基础
索引是数据库系统里面最重要的概念之一.一句话简单来说,索引的出现其实是为了提高数据查询的效率,就像书的目录一样. 常见模型 索引的出现是为了提高查询效率,但是实现索引的方式却有很多种,这里就介绍三种常 ...
- Mysql-高性能索引策略及不走索引的例子总结
Mysql-高性能索引策略 正确的创建和使用索引是实现高性能查询的基础.我总结了以下几点索引选择的策略和索引的注意事项: 索引的使用策略: (PS:索引的选择性是指:不重复的索引值,和数据表的记录总数 ...
随机推荐
- 指定一个M3U8文件,判断它包含的TS文件是不是都存在。指定一个Office生成的Swf文件,判断它包含的Swf文件是不是完整都存在。
static void Main(string[] args) { //检查M3u8文件 var fiPath = @"D:\Work\CloudPlatformUtil\CloudPlat ...
- spring boot application.properties 配置参数详情
multipart multipart.enabled 开启上传支持(默认:true) multipart.file-size-threshold: 大于该值的文件会被写到磁盘上 multipart. ...
- 注册表键值明明存在OpenSubKey始终返回null,解决方案
先上代码及实例 RegistryKey rsg = Registry.LocalMachine.OpenSubKey(@"SOFTWARE\Macromedia\FlashPaper Pri ...
- Codeforces 498B Name That Tune 概率dp (看题解)
Name That Tune 刚开始我用前缀积优化dp, 精度炸炸的. 我们可以用f[ i ][ j ] 来推出f[ i ][ j + 1 ], 记得加加减减仔细一些... #include<b ...
- gitlab发送邮件
1.修改配置文件,建议使用企业邮箱 #vim /etc/gitlab/gitlab.rb gitlab_rails['smtp_enable'] = true gitlab_rails['smtp_a ...
- Minimum Transport Cost HDU1385(路径打印)
最短路的路径打印问题 同时路径要是最小字典序 字典序用floyd方便很多 学会了两种打印路径的方法!!! #include <stdio.h> #include <string.h& ...
- 009 搭建Spark的maven本地windows开发环境以及测试
在看完下面的细节之后,就会发现,spark的开发,只需要hdfs加上带有scala的IDEA环境即可. 当run运行程序时,很快就可以运行结束. 为了可以看4040界面,需要将程序加上暂定程序,然后 ...
- Sensor传感器(摇一摇)
<ImageView android:layout_width="wrap_content" android:layout_height="wrap_content ...
- 12,EasyNetQ-自动订阅
EasyNetQ自v0.7.1.30附带一个简单的AutoSubscriber. 您可以使用它轻松扫描实现接口IConsume <T>或IConsumeAsync <T>的类的 ...
- python——设计模式
设计模式是什么? 设计模式是经过总结.优化的,对我们经常会碰到的一些编程问题的可重用解决方案.一个设计模式并不像一个类或一个库那样能够直接作用于我们的代码.反之,设计模式更为高级,它是一种必须在特定情 ...