作者:桂。

时间:2018-05-08  18:35:56

链接:http://www.cnblogs.com/xingshansi/p/9010282.html


本文遗留几处细节问题,待闲下来解决。 其中多处涉及原语,以后若有需要,进一步了解可参考文档:hdl.pdf + CLB.pdf。】

一、模块汇总

  • 13- 4点FFT(fft4)

路径:印象笔记0019/012

基4原语实现。4点FFT变换(其中时域、频域 均为复数信号):

核心代码:

dat_add_0_r[0] <= $signed(dat_r[0]) + $signed(dat_r[2]);
dat_add_0_r[1] <= $signed(dat_r[1]) + $signed(dat_r[3]);
dat_add_0_r[2] <= $signed(dat_r[0]) - $signed(dat_r[2]);
dat_add_0_r[3] <= $signed(dat_i[1]) - $signed(dat_i[3]); dat_add_0_i[0] <= $signed(dat_i[0]) + $signed(dat_i[2]);
dat_add_0_i[1] <= $signed(dat_i[1]) + $signed(dat_i[3]);
dat_add_0_i[2] <= $signed(dat_i[0]) - $signed(dat_i[2]);
dat_add_0_i[3] <= $signed(dat_r[3]) - $signed(dat_r[1]); dat_add_1_r[0] <= $signed(dat_add_0_r[0]) + $signed(dat_add_0_r[1]);
dat_add_1_r[1] <= $signed(dat_add_0_r[2]) + $signed(dat_add_0_r[3]);
dat_add_1_r[2] <= $signed(dat_add_0_r[0]) - $signed(dat_add_0_r[1]);
dat_add_1_r[3] <= $signed(dat_add_0_r[2]) - $signed(dat_add_0_r[3]); dat_add_1_i[0] <= $signed(dat_add_0_i[0]) + $signed(dat_add_0_i[1]);
dat_add_1_i[1] <= $signed(dat_add_0_i[2]) - $signed(dat_add_0_i[3]);
dat_add_1_i[2] <= $signed(dat_add_0_i[0]) - $signed(dat_add_0_i[1]);
dat_add_1_i[3] <= $signed(dat_add_0_i[2]) + $signed(dat_add_0_i[3]);

  

四个数的加减可在3个数加减的基础上扩展(3个数相加),借助1- adder_3op的思路,4个数相加拆解:3个数相加 + 1个数,具体参考:印象笔记:0019/014。同样可以实现FFT/IFFT。【至于3个数加减的优势,本质上应该取决于CLB特性。】

  • 14- 8点FFT(fftr8)

1) 基2原语实现

印象笔记:0019/012,fft_eight.sv

2) 基2、基4原语实现tb文件存在问题,待排查。

8点可在4点FFT的基础上进行基2的求解,理论基础:

data = randi(20,[1,8]);
RefFFT = fft(data);
data_odd = data(1:2:end);
data_even = data(2:2:end);
wk = exp(-1j*2*pi/8*[0:3]);
fft_connect = fft(data_even).*wk+fft(data_odd);
[fft_connect,sum(data.*[(-1).^[0:7]]),fliplr(conj(fft_connect(2:end)));RefFFT]

二者完全等价。即8点FFT比4点FFT多了复数相乘、复数相加的基本操作。对于8点的旋转因子: exp(-1j*2*pi/8*[0:3])近有sqrt(2),利用18bits*25bits乘法器,sqrt(2)/2定义为 parameter wk = b = 25'd11863283; //2^0.5/2*2^24,借助rtldelay延拍,利用乘法即可求解。

3)IP核实现

参考:基础006_pg109_IP-Xfft

  • 15- 32点FFT(fftr32)

基2、基4混合基原语实现。基本思路同8点FFT类似。

路径:印象笔记:0019/012,涉及到分时复用,待进一步细化。

  • 16- N点FFT(N为2整次幂)

参数化编程。【暂未编写

目前的思路是:
1)如果是4的整次幂,则基4实现;

2)如果不是4的整次幂,N/2基4实现,最后一级基2实现。

基4递归的思路参考二、FFT原理简述-Part.B

二、FFT原理简述

本段文字参考:程佩清《数字信号处理》。

  A-基2FFT

DFT与IDFT操作:

快速实现分为DIF、DIT(T:time , F:frequency)两种角度,

DIT2原理:

实现流图:

DIF2原理:

流图:

  B-基4FFT

此处仅记录DIF4,具体可参考基4FFT实现

matlab仿真:

clear;
a=0:4095;x=sin(2*pi/3*a)+sin(2*pi/4*a)+sin(2*pi/5*a); %输入三频率信号
subplot(2,1,1),plot(x);
axis([0 4096 -3 3]),title('时域信号波形');
subplot(2,2,3),plot(abs(fft(x)));
axis([0 4096 0 2500]),title('系统 FFT 计算出的频谱');
N=4096; %N 点 DFT,N 为 4 的整数次幂
L=log(N)/log(4); %4 点 DFT 分解级数
Wn=exp(-2j*pi/N); %旋转因子
temp=zeros(1,N); %定义中间临时数组
%%%4 进制逆序排序%%%
%这里通过对四进制数 n,先每相邻两位翻转,再将两位合成一组,相邻两组翻转,直到整体翻转一次为止,即可得到 4 进制逆序排序。
n=0:N-1;
screen=ones(1,N);
n=bitor(bitand(n,screen*hex2dec('cccc'))/4,bitand(n,screen*hex2dec('3333'))*4);
n=bitor(bitand(n,screen*hex2dec('f0f0'))/16,bitand(n,screen*hex2dec('0f0f'))*16);
n=bitor(bitand(n,screen*hex2dec('ff00'))/256,bitand(n,screen*hex2dec('00ff'))*256);
n=n/4^(8-L)+1;
for n1=1:N
temp(n(n1))=x(n1);
end
x=temp;
%%%基 4FFT%%%
%这部分根据递推公式以 4 点 DFT 为基本单元,反复进行 L 级迭代,最终得到 N 点 DFT 值。
for l=1:L %运算级循环
group_cont_2=4^(L-l); %第 l 级数据分组数
group_cont_1=4^(L-l+1); %第 l-1 级数据分组数
group_interval_2=4^l; %第 l 级组间数据间隔个数,也是组内数据个数
group_interval_1=4^(l-1); %第 l-1 级组间数据间隔个数,也是组内数据个数
G=group_cont_2-1; %分组上限
K=group_interval_1-1; %组内数据上限
for g=0:G %每一级中包含的组循环,遍历每一组,计算各组中的数据
for k0=0:K %遍历每一组中的所有数据,计算次级数据
k=k0+g*group_interval_2+1; %每组数据中第一个数据序号
m=group_cont_2*k0; %每一级所乘旋转因子的指数因子
k1=k;k2=k1+group_interval_1;k3=k2+group_interval_1;k4=k3+group_interval_1; %每组数据中四个数据的序号
X1=x(k1);X2=Wn^m*x(k2);X3=Wn^(2*m)*x(k3);X4=Wn^(3*m)*x(k4); %将递推公式中重复计算部分用变量代换,减少运算次数
%根据递推公式计算,结果存储到临时数组 temp
temp(k1)=X1+X2+X3+X4;
temp(k2)=X1-1j*X2-X3+1j*X4;
temp(k3)=X1-X2+X3-X4;
temp(k4)=X1+1j*X2-X3-1j*X4;
end
end
x=temp; %将 temp 中临时存储的第 l 级结果赋值给 x,作为次级运算的输入
end
subplot(2,2,4),plot(abs(x));
axis([0 4096 0 2500]),title('自定义基 4FFT 计算出的频谱');

  

Xilinx 常用模块汇总(verilog)【02】的更多相关文章

  1. Xilinx 常用模块汇总(verilog)【04】

    作者:桂. 时间:2018-05-15  13:07:02 链接:http://www.cnblogs.com/xingshansi/p/9040472.html 前言 Xilinx 常用模块汇总(v ...

  2. Xilinx 常用模块汇总(verilog)【03】

    作者:桂. 时间:2018-05-10  2018-05-10  21:03:44 链接:http://www.cnblogs.com/xingshansi/p/9021919.html 前言 主要记 ...

  3. Xilinx 常用模块汇总(verilog)【01】

    作者:桂. 时间:2018-05-07  19:11:23 链接:http://www.cnblogs.com/xingshansi/p/9004492.html 前言 该文私用,不定期更新,主要汇总 ...

  4. npm常用模块汇总

    npm常用模块汇总: 点击插件名字,查看使用文档 npm常用模块汇总 node常用模块汇总 gulp常用插件汇总 npx 使用教程:npx使用教程 bable:bable这是JavaScript编译器 ...

  5. node常用模块汇总

    node常用模块汇总: 点击插件名字,查看使用文档 npm常用模块汇总 node常用模块汇总 gulp常用插件汇总 mkdirp:在node.js中像mkdir -p一样递归创建目录及其子目录

  6. python 所有常用模块汇总

    time:时间 时间戳(timestamp):time.time() 延迟线程的运行:time.sleep(secs) (指定时间戳下的)当前时区时间:time.localtime([secs]) ( ...

  7. Python基础(九) 常用模块汇总

    3.8 json模块重点 json模块是将满足条件的数据结构转化成特殊的字符串,并且也可以反序列化还原回去. 不同语言都遵循的一种数据转化格式,即不同语言都使用的特殊字符串.(比如Python的一个列 ...

  8. 模块、包及常用模块(time/random/os/sys/shutil)

    一.模块 模块的本质就是一个.py 文件. 导入和调用模块: import module from module import xx from module.xx.xx import xx as re ...

  9. npm常用模块之bable使用

    更多npm常用模块使用请访问:npm常用模块汇总 bable这是JavaScript编译器. Babel是一个工具链,主要用于在当前和较旧的浏览器或环境中将ECMAScript 2015+代码转换为J ...

随机推荐

  1. 001 Spark的简介以及入门

    1.hadoop,spark,Flink的比较 MapReduce: 分布式的计算框架 -> Hive 问题: shuffle:大文件的排序+读写磁盘+网络传输 => 比较慢 只有两种执行 ...

  2. java过滤防止sql注入过滤

    /** * 过滤特殊字符 * @author: Simon * @date: 2017年8月31日 下午1:47:56 * @param str * @return */ public static ...

  3. Javascript日常编码中的一些常见问题

    一.尽量少用全局变量   这是一个疑问最少,同时流传最 广的一条.Javascript使用函数管理作用域,全局变量最大的问题在于同名变量冲突.这种隐患产生比较直接的两个原因就是Javascript语言 ...

  4. 连接池commons-pool2

    commons-pool2池技术可以应用在对象上构建对象池,也可以用在http连接或者netty连接 构建连接池,池技术为了节省对象创建销毁或连接资源频繁申请销毁带来的时间消费. 当用于连接池在进行扩 ...

  5. jQuery.when().done()

    在使用jQuery.when()调用外部声明方法时,如果方法不为Deferred(延时)对象,则done会立即执行,所有需要在调用的方法声明一个var deferred = $.Deferred(); ...

  6. 码云,git使用 教程-便签

    码云,git使用 教程-便签 Code cloud, git use tutorial - note 作者:韩梦飞沙 Author:han_meng_fei_sha 邮箱:313134555@qq.c ...

  7. Python3绘图之Matplotlib(03)

    饼图 = pie 散点图 = scatter plots 极化图 = polar charts 箭头 = Annotations 本节代码示例 import matplotlib.pyplot as ...

  8. Codechef October Challenge 2018 游记

    Codechef October Challenge 2018 游记 CHSERVE - Chef and Serves 题目大意: 乒乓球比赛中,双方每累计得两分就会交换一次发球权. 不过,大厨和小 ...

  9. 迪杰斯特拉算法dijkstra(可打印最短路径)

    #include <iostream> #include <iomanip> #include <string> using namespace std; #def ...

  10. 常用类及 LeetCode 每日一题

    1 日期时间类 在 Java 语言中,是通过时间戳来表示时间的.所谓的时间戳,在 Java 中就是指当前时间距离历元(1970-01-01 00:00:00)的时间间隔,单位是毫秒,所以 Java 中 ...