题目链接:http://poj.org/problem?id=3635

Description

After going through the receipts from your car trip through Europe this summer, you realised that the gas prices varied between the cities you visited. Maybe you could have saved some money if you were a bit more clever about where you filled your fuel?

To help other tourists (and save money yourself next time), you want to write a program for finding the cheapest way to travel between cities, filling your tank on the way. We assume that all cars use one unit of fuel per unit of distance, and start with an empty gas tank.

Input

The first line of input gives 1 ≤ n ≤ 1000 and 0 ≤ m ≤ 10000, the number of cities and roads. Then follows a line with n integers 1 ≤ pi ≤ 100, where pi is the fuel price in the ith city. Then follow m lines with three integers 0 ≤ u, v < n and 1 ≤ d ≤ 100, telling that there is a road between u and v with length d. Then comes a line with the number 1 ≤ q ≤ 100, giving the number of queries, and q lines with three integers 1 ≤ c ≤ 100, s and e, where c is the fuel capacity of the vehicle, s is the starting city, and e is the goal.

Output

For each query, output the price of the cheapest trip from s to e using a car with the given capacity, or "impossible" if there is no way of getting from s to e with the given car.

Sample Input

5 5
10 10 20 12 13
0 1 9
0 2 8
1 2 1
1 3 11
2 3 7
2
10 0 3
20 1 4
Sample Output

170
impossible

题意:

有 $n(1 \le n \le 1e3)$ 个城市和 $m(1 \le m \le 1e4)$ 条道路,构成一张无向图。在每个城市里有一个加油站,不同城市的加油站价格可能不同。通过一条道路的油耗即为该边的边权。

现在有不超过 $100$ 个询问,每个询问要计算油箱容量为 $c$ 的车子能不能从 $s$ 城到达 $e$ 城,若能则给出最少油钱花费。

题解:

其实这种最短路变形已经见过很多次了,一般都是在原来 $d[v]$ 的基础上,再添加一维,变成二维状态的最短路。

$d[v][r]$ 表示到达 $v$ 节点、油箱还剩 $r$ 单位的油的状态下,最少花费的油钱。

写这种题,用优先队列Dijkstra的想防止出错的关键点:把入队和修改 $d[v][r]$ 绑定起来。

AC代码:

#include<cstdio>
#include<algorithm>
#include<queue>
#include<vector>
#include<cstring>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=1e3+;
const int maxm=1e4+;
const int maxc=+; int n,m,q;
int p[maxn]; struct Edge{
int u,v,w;
Edge(int _u=,int _v=,int _w=){u=_u,v=_v,w=_w;}
};
vector<Edge> E;
vector<int> G[maxn];
void init(int l,int r)
{
E.clear();
for(int i=l;i<=r;i++) G[i].clear();
}
void addedge(int u,int v,int w)
{
E.push_back(Edge(u,v,w));
G[u].push_back(E.size()-);
} struct Qnode{
int v;
int d,r;
Qnode(){}
Qnode(int _v,int _d,int _r) {
v=_v, d=_d, r=_r;
}
bool operator<(const Qnode& oth)const {
return d>oth.d;
}
};
int d[maxn][maxc],vis[maxn][maxc];
int dijkstra(int c,int s,int t)
{
memset(d,0x3f,sizeof(d));
memset(vis,,sizeof(vis)); priority_queue<Qnode> Q;
d[s][]=, Q.push(Qnode(s,d[s][],));
while(!Q.empty())
{
int u=Q.top().v, r=Q.top().r; Q.pop();
if(u==t) return d[u][r];
if(vis[u][r]) continue;
else vis[u][r]=; if(r<c) {
d[u][r+]=d[u][r]+p[u], Q.push(Qnode(u,d[u][r+],r+));
}
for(int i=;i<G[u].size();i++)
{
Edge &e=E[G[u][i]]; int v=e.v;
if(r<e.w || vis[v][r-e.w]) continue;
if(d[v][r-e.w]>d[u][r]) {
d[v][r-e.w]=d[u][r], Q.push(Qnode(v,d[v][r-e.w],r-e.w));
}
}
}
return INF;
} int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<n;i++) scanf("%d",&p[i]);
init(,n);
for(int i=,u,v,w;i<=m;i++)
{
scanf("%d%d%d",&u,&v,&w);
addedge(u,v,w);
addedge(v,u,w);
}
scanf("%d",&q);
for(int i=,c,s,t;i<=q;i++)
{
scanf("%d%d%d",&c,&s,&t);
int ans=dijkstra(c,s,t);
if(ans<INF) printf("%d\n",ans);
else printf("impossible\n");
}
}

POJ 3635 - Full Tank? - [最短路变形][优先队列优化Dijkstra]的更多相关文章

  1. POJ 3635 - Full Tank? - [最短路变形][手写二叉堆优化Dijkstra][配对堆优化Dijkstra]

    题目链接:http://poj.org/problem?id=3635 题意题解等均参考:POJ 3635 - Full Tank? - [最短路变形][优先队列优化Dijkstra]. 一些口胡: ...

  2. Gym 101873C - Joyride - [最短路变形][优先队列优化Dijkstra]

    题目链接:http://codeforces.com/gym/101873/problem/C 题意: 这是七月的又一个阳光灿烂的日子,你决定和你的小女儿一起度过快乐的一天.因为她真的很喜欢隔壁镇上的 ...

  3. ZOJ - 3946-Highway Project(最短路变形+优先队列优化)

    Edward, the emperor of the Marjar Empire, wants to build some bidirectional highways so that he can ...

  4. POJ 1511 Invitation Cards(单源最短路,优先队列优化的Dijkstra)

    Invitation Cards Time Limit: 8000MS   Memory Limit: 262144K Total Submissions: 16178   Accepted: 526 ...

  5. poj 1511 优先队列优化dijkstra *

    题意:两遍最短路 链接:点我 注意结果用long long #include<cstdio> #include<iostream> #include<algorithm& ...

  6. POJ 3635 Full Tank? 【分层图/最短路dp】

    任意门:http://poj.org/problem?id=3635 Full Tank? Time Limit: 1000MS   Memory Limit: 65536K Total Submis ...

  7. poj 3635 Full Tank? ( bfs+dp思想 )

    Full Tank? Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5857   Accepted: 1920 Descri ...

  8. poj 3635 Full Tank? ( 图上dp )

    题意: 已知每一个点的加油站的油价单位价格(即点权).每条路的长度(边权). 有q个询问.每一个询问包含起点s.终点e和油箱容量. 问从起点走到终点的最小花费.假设不可达输出impossible,否则 ...

  9. POJ-1797Heavy Transportation,最短路变形,用dijkstra稍加修改就可以了;

    Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K          Description Background  Hugo ...

随机推荐

  1. MySQL 聚簇索引&&二级索引&&辅助索引

    MySQL非聚簇索引&&二级索引&&辅助索引 mysql中每个表都有一个聚簇索引(clustered index ),除此之外的表上的每个非聚簇索引都是二级索引,又叫辅 ...

  2. node服务器中打开html文件的两种方法

    方法1:利用 Express 托管静态文件,详情查看这里 方法2:使用fs模块提供的readFile方法打开文件,让其以text/html的形式输出. 代码: var express = requir ...

  3. 转 全面理解Javascript闭包和闭包的几种写法及用途

    转自:http://www.cnblogs.com/yunfeifei/p/4019504.html 好久没有写博客了,过了一个十一长假都变懒了,今天总算是恢复状态了.好了,进入正题,今天来说一说ja ...

  4. 团队工作效率分析工具gitstats

    如果你是团队领导,关心团队的开发效率和工作激情:如果你是开源软件开发者,维护者某个repo:又或者,你关心某个开源软件的开发进度,那么你可以试一试gitstats. gitstats 是一个git仓库 ...

  5. KeyTool 和 OpenSSL 相互转换 [转]

    REM 生成自签名 CA 证书 REM Win32 OpenSSL REM http://slproweb.com/products/Win32OpenSSL.html REM How to crea ...

  6. logstash retrying failed action with response code: 429

    https://blog.csdn.net/alan_liuyue/article/details/78926015 https://blog.csdn.net/ypc123ypc/article/d ...

  7. [k8s]k8s-ceph-statefulsets-storageclass-nfs 有状态应用布署实践

    k8s stateful sets storageclass 有状态应用布署实践v2 Copyright 2017-05-22 xiaogang(172826370@qq.com) 参考 由于网上的文 ...

  8. AndroidManifest: windowSoftInputMode属性总结

    在Android中,可以通过给Activity设置windowSoftInputMode这个属性来控制软键盘与Activity的主窗口的交互方式. 1. 当Activity成为用户注意的焦点时软键盘的 ...

  9. C++11 列表初始化

    在我们实际编程中,我们经常会碰到变量初始化的问题,对于不同的变量初始化的手段多种多样,比如说对于一个数组我们可以使用 int arr[] = {1,2,3}的方式初始化,又比如对于一个简单的结构体: ...

  10. vue设置默认地址和配送方式

    1.截图 2.address.html <!DOCTYPE html> <html lang="en"> <head> <meta cha ...