loj#2038. 「SHOI2015」超能粒子炮・改
题目链接
题解
卢卡斯定理
之后对于%p分类
剩下的是个子问题递归

n,k小于p的S可以预处理,C可以卢卡斯算
代码
#include<cstdio>
#include<algorithm>
inline long long read() {
long long x = 0,f = 1;
char c = getchar();
while(c < '0' || c > '9') c = getchar();
while(c <= '9' && c >= '0') x = x * 10 + c - '0',c = getchar();
return x * f;
}
#define LL long long
const int P = 2333;
const int maxn = P + 7;
int c[maxn][maxn],s[maxn][maxn];
inline void add(int &x,int y) {
x = x + y >= P ? x + y - P : x + y;
}
int C(LL n,LL k) {
if(k < 0 || k > n)return 0;
if(n<P)return c[n][k];
LL a = n / P,b = k/P;
return C(a,b) * c[n % P][k % P] % P;
}
int S(LL n,LL k) {
if(k < 0) return 0;
LL a = n/P,b = k / P;
return (S(a,b - 1) * s[n % P][P - 1] + C(a,b) * s[n % P][k % P]) % P;
}
void pre() {
c[0][0] = 1;
for(int i = 0;i < P - 1;++ i)
for(int j = 0;j <= i;++ j)
add(c[i + 1][j],c[i][j]),add(c[i + 1][j + 1],c[i][j]);
for(int i = 0;i < P;++ i) {
s[i][0] = c[i][0];
//if(i == 2332) puts("cnm");
for(int j = 1;j < P;++ j) {
//if(j == 2332) puts("cnm");
s[i][j] = s[i][j - 1] , add(s[i][j],c[i][j]);
}
}
}
int main() {
pre();
LL T = read();
for(int i = 1;i <= T;++ i) {
LL a = read(),b = read();
printf("%lld\n",S(a,b));
}
return 0;
}
loj#2038. 「SHOI2015」超能粒子炮・改的更多相关文章
- 【LOJ】#2038. 「SHOI2015」超能粒子炮・改
题解 用lucas随便分析一波就出来了 \(\binom{n}{k} = \binom{n % p}{k % p}\binom{n / p}{k / p}\) 那么对于一个余数r,如果r <= ...
- 「SHOI2015」超能粒子炮・改
「SHOI2015」超能粒子炮・改 给你\(T\)组询问,每组询问给定参数\(n,k\),计算\(\sum\limits_{i=0}^k\dbinom{n}{i}\). \(T\leq10^5,n,k ...
- BZOJ 4591 【SHOI2015】 超能粒子炮·改
题目链接:超能粒子炮·改 这道题的大体思路就是用\(lucas\)定理,然后合并同类项,就可以得到一个可以递归算的式子了. 我们用\(S(n,k)\)表示答案,\(p\)表示模数(\(2333\)是一 ...
- bzoj4591 【Shoi2015】超能粒子炮·改
由Lucas定理C(n,k)=C(n/2333,k/2333)*C(n%2333,k%2333)%2333 则ans=ΣC(n,i),(i<=k) =C(n/2333,0)*C(n%2333, ...
- loj 2038 / 洛谷 P4345 [SHOI2015] 超能粒子炮・改 题解
好玩的推式子 题目描述 曾经发明了脑洞治疗仪与超能粒子炮的发明家 SHTSC 又公开了他的新发明:超能粒子炮・改--一种可以发射威力更加强大的粒子流的神秘装置. 超能粒子炮・改相比超能粒子炮,在威力上 ...
- [LOJ 2039] 「SHOI2015」激光发生器
[LOJ 2039] 「SHOI2015」激光发生器 链接 链接 题解 分为两个部分 第一个是求直线之间的交点找到第一个触碰到的镜面 第二个是求直线经过镜面反射之后的出射光线 第一个很好做,第二个就是 ...
- Bzoj 4591: [Shoi2015]超能粒子炮·改 数论,Lucas定理,排列组合
4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 178 Solved: 70[Submit][Stat ...
- bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]
4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^ ...
- 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)
[BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...
随机推荐
- 简述JavaScript作用域与作用域链
关于变量作用域的知识,相信学习JavaScript的朋友们一定早已经接触过,这里简单列举: JavaScript中变量是以对象属性的形式存在的:全局变量是全局对象的属性:局部变量是声明上下文对象的属性 ...
- 【vim】把当前文件转化为网页
这会生成一个 HTML 文件来显示文本,并在分开的窗口显示源代码: :%TOhtml (译者注:原文是 :%Tohtml,但在我的电脑上是 :%TOhtml) 转载自:https://linux.cn ...
- nodejs package.json解释
{ "name": "node-echo", # 包名,在NPM服务器上须要保持唯一 "version": "1.0.0" ...
- windows 10 64bit下安装Tensorflow+Keras+VS2015+CUDA8.0 GPU加速
原文地址:http://www.jianshu.com/p/c245d46d43f0 写在前面的话 2016年11月29日,Google Brain 工程师团队宣布在 TensorFlow 0.12 ...
- Project Euler Problem8
Largest product in a series Problem 8 Find the greatest product of five consecutive digits in the 10 ...
- Springboot分模块开发
这是个spring cloud项目,service-base:基础服务:service-config:配置中心:service-entity:实体类: service-gateway:服务网关:ser ...
- SPLAY,LCT学习笔记(三)
前两篇讲述了SPLAY模板操作,这一篇稍微介绍一下SPLAY的实际应用 (其实只有一道题,因为本蒟蒻就写了这一个) 例:bzoj 1014火星人prefix 由于本蒟蒻不会后缀数组,所以题目中给的提示 ...
- python 全栈开发,Day48(标准文档流,块级元素和行内元素,浮动,margin的用法,文本属性和字体属性)
昨日内容回顾 高级选择器: 后代选择 : div p 子代选择器 : div>p 并集选择器: div,p 交集选择器: div.active 属性选择器: [属性~='属性值'] 伪类选择器 ...
- 数据库中的null用法
- Android strings.xml中定义字符串显示空格
<string name="str">字 符 串</string> 其中 就表示空格.如果直接在里面键入空格,无论多少空格都只会显示一个. 用的XML转 ...