Some Formulas.
待填。。
计数问题
在一个有\(n\)个点的完全图(complete graph)中有多少棵生成树
对每个\(n>0\),\({1,2,\cdots,n}\)上的完全图恰好有\(n^{n-2}\)棵生成树。
证明见《具体数学(第二版)》7.6 指数型生成函数。
**[Update] **这不就是Prufer序列的结论吗= =。
排列组合
1. 当 \(C_n^m\) 为奇数时,\((n\&m)==m\)
证明:因为是\(\mod 2\),所以考虑Lucas定理。
在\(\mod 2\)的情况下\(C(n,m)\)最后只会化成4种情况: \(C(0,1),C(0,0),C(1,0),C(1,1)\),后三种情况都是1,\(C(0,1)\)不存在(0),所以如果\(C(n,m)\mod 2\)为偶数,那么一定在Lucas的过程中出现了\(C(0,1)\)。
\(\mod 2\)的过程容易想到位运算。
由\(C(n,m)\mod 2=C(n\%2,m\%2)*C(n/2,m/2)=C(n\&1,m\&1)*C(n>>1,m>>1)\) 可知,若\(C(n,m)\)为奇数,那么\(m\)一定是\(n\)二进制1的子集。
2. $$\sum_{i=0}n\frac{1}{i!(n-i)!}=\frac{2n}{n!}$$
https://www.cnblogs.com/SovietPower/p/9425230 (这好像是某组合公式吧)
3. Catalan数应用扩展
https://blog.csdn.net/qq_33435265/article/details/68954205
4. 组合数的各种性质及定理
https://blog.csdn.net/litble/article/details/75913032
数论
1. 计算\(n!\)中质因子p的个数的公式(\(\varepsilon_{p}(n!)\))
\]
递归式为$$f(n)=f(\left\lfloor\frac{n}{p}\right\rfloor)+\left\lfloor\frac{n}{p}\right\rfloor$$
for(LL i=n; i; i/=p) k+=i/p;
应用:分解阶乘的质因数,如BZOJ1005、CF 1114C、扩展Lucas。
可由\(\varepsilon_2(n!)\)推广到任意素数\(p\)?即$$\varepsilon_p(n!)=\left\lfloor\frac{n}{p}\right\rfloor +\left\lfloor\frac{n}{p^2}\right\rfloor +\left\lfloor\frac{n}{p^3}\right\rfloor +\cdots=\sum_{k\geq1}\left\lfloor\frac{n}{p^k}\right\rfloor$$
\(\varepsilon_p(n!)\)有多大?从求和式中直接去掉底,然后对无穷几何级数求和,可以得到一个简单(然而很好的)上界:
\(\begin{aligned}\varepsilon_p(n!)&<\frac{n}{p}+\frac{n}{p^2}+\frac{n}{p^3}+\cdots\\&=\frac{n}{p}\left(1+\frac{1}{p}+\frac{1}{p^2}+\cdots\right)\\&=\frac{n}{p}\left(\frac{p}{p-1}\right)\\&=\frac{n}{p-1}\end{aligned}\)
——from 《具体数学(第二版)》
有兴趣的还可以看直尺函数(ruler function)。
2. 线性求阶乘逆元
因为\(((n-1)!)^{-1}=(n!)^{-1}*n\)。应用见排列组合2.
inv[n]=FP(fac[n],mod-2);
for(int i=n-1; ~i; --i) inv[i]=inv[i+1]*(i+1)%mod;
3. \(n\)为奇数时,\(\varphi(n)=\varphi(2n)\)。
Some Formulas.的更多相关文章
- たくさんの数式 / Many Formulas AtCoder - 2067 (枚举二进制)
Problem Statement You are given a string S consisting of digits between 1 and 9, inclusive. You can ...
- AtCoder Beginner Contest 045 C - たくさんの数式 / Many Formulas
Time limit : 2sec / Memory limit : 256MB Score : 300 points Problem Statement You are given a string ...
- Codeforces 424 C. Magic Formulas
xor是满足交换律的,展开后发现仅仅要能高速求出 [1mod1....1modn],....,[nmod1...nmodn]的矩阵的xor即可了....然后找个规律 C. Magic Formulas ...
- CodeForce 424C Magic Formulas
这个题就是求出给的公式的结果. 仅仅要知道异或运算满足交换律跟结合律即可了.之后就是化简公式. #include<map> #include<string> #include& ...
- Many Formulas
You are given a string S consisting of digits between 1 and 9, inclusive. You can insert the letter ...
- codeforce-424C. Magic Formulas(数学)
C. Magic Formulas time limit per test:2 seconds memory limit per test:256 megabytes input stan ...
- Experimental Educational Round: VolBIT Formulas Blitz
cf的一次数学场... 递推 C 题意:长度<=n的数只含有7或8的个数 分析:每一位都有2种可能,累加不同长度的方案数就是总方案数 组合 G 题意:将5个苹果和3个梨放进n个不同的盒子里的方案 ...
- Codeforces Round #242 (Div. 2) C. Magic Formulas
解题思路是: Q=q1^q2.......^qn = p1^p2......^pn^((1%1)^....(1%n))^((2%1)^......(2%n))^.... 故Q的求解过程分成两部分 第一 ...
- Codeforces Round #242 (Div. 2) C. Magic Formulas (位异或性质 找规律)
题目 比赛的时候找出规律了,但是找的有点慢了,写代码的时候出了问题,也没交对,还掉分了.... 还是先总结一下位移或的性质吧: 1. 交换律 a ^ b = b ^ a 2. 结合律 (a^b) ^ ...
- Npoi 导出Excel 下拉列表异常: String literals in formulas can't be bigger than 255 Chars ASCII
代码: public static void dropDownList(string[] datas, string filePath) { HSSFWorkbook workbook = new H ...
随机推荐
- c++动态库封装及调用(3、windows下动态库调用)
1.DLL的隐式调用 隐式链接采用静态加载的方式,比较简单,需要.h..lib..dll三件套.新建“控制台应用程序”或“空项目”.配置如下: 项目->属性->配置属性->VC++ ...
- 【工具测试】Acunetix 11-登录后扫描的功能
1.概要 在测试的过程中,会给一些只有登录口的测试站点,只有登录后才能访问更多的页面. Acunetix 11的登录后扫描功能摸索了老半天,原来这么神奇.学习了! 2.操作 登录之后 - [Add T ...
- 【vim】删除指定标记前的内容 dt[标记]
和删除标记内部有些相似,但目的不同.命令如下: dt[标记] 会删除所有光标和标记之间的内容(保持标记不动),如果在同一行有这个标记的话.例如 dt. 会删除至句子的末尾,但保持 '.' 不动.
- 关于GTID模式下备份时 --set-gtid-purged=OFF 参数的实验【转】
刚刚听了吴老师是复制章节课程,对于GTID模式下备份数据--set-gtid-purged=OFF 参数有些不理解,于是乎做了实验,加深理解,得出些结论,如有错漏请批评指正! 部分备份: [root@ ...
- 最大流算法-最高标号预流推进(HLPP)
昨天我们学习了ISAP算法,它属于增广路算法的大类.今天学习的算法是预流推进算法中很高效的一类--最高标号预流推进(HLPP). 预流推进 预流推进是一种很直观的网络流算法.如果给到一个网络流让你手算 ...
- 使用ts-loader与webpack编译typescripts出现Module build failed: TypeError: Cannot read property 'afterCompile' of undefined
解决方法 将ts-loader从4.0降低到3.1.1解决问题.是由于webpack和ts-loader版本不兼容造成的.
- LeetCode(44): 通配符匹配
Hard! 题目描述: 给定一个字符串 (s) 和一个字符模式 (p) ,实现一个支持 '?' 和 '*' 的通配符匹配. '?' 可以匹配任何单个字符. '*' 可以匹配任意字符串(包括空字符串). ...
- ctype
original:http://www.runoob.com/cprogramming/c-standard-library-ctype-h.html 下面列出了头文件 ctype.h 中定义的函数: ...
- php文件路径获取文件名
物理截取: $file = '/www/htdocs/inc/lib.inc.php'; $filename = basename($file); echo $filename, '<br/&g ...
- iOS学习笔记之Block
写在前面 学习iOS开发的过程中,在很多场合都遇到了Block.说实话,虽然自己依葫芦画瓢的将Block"拿来"用着,但这种"拿来主义"与学习时应持有的探索精神 ...