SRM 403(1-250pt, 1-500pt)
DIV1 250pt
题意:称各个数位只含有4和7的数为lucky number,给定a,b,求[a, b]中的lucky number有多少个。a, b <= 10^9
解法:很明显的数位dp,写出来也就20行左右。本来以为最近刚好在做数位dp,可以很快出,结果我想着刚才做的那个数位dp,脑袋进水居然直接敲了段递归的代码还半天没调出来.......然后很快写了段非递归的代码过了.....160score...
后来看官方题解说,由于10^9内实际上只有1022个lucky number,所以可以求全部生成出来,看有哪些在[a, b]上。
tag:数位dp,think
// BEGIN CUT HERE
/*
* Author: plum rain
* score :
*/
/* */
// END CUT HERE
#line 11 "TheLuckyNumbers.cpp"
#include <sstream>
#include <stdexcept>
#include <functional>
#include <iomanip>
#include <numeric>
#include <fstream>
#include <cctype>
#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <cstdlib>
#include <set>
#include <queue>
#include <bitset>
#include <list>
#include <string>
#include <utility>
#include <map>
#include <ctime>
#include <stack> using namespace std; #define CLR(x) memset(x, 0, sizeof(x))
#define CLR1(x) memset(x, -1, sizeof(x))
#define PB push_back
#define SZ(v) ((int)(v).size())
#define ALL(t) t.begin(),t.end()
#define zero(x) (((x)>0?(x):-(x))<eps)
#define out(x) cout<<#x<<":"<<(x)<<endl
#define tst(a) cout<<#a<<endl
#define CINBEQUICKER std::ios::sync_with_stdio(false) typedef vector<int> VI;
typedef vector<string> VS;
typedef vector<double> VD;
typedef pair<int, int> pii;
typedef long long int64; const double eps = 1e-;
const double PI = atan(1.0)*;
const int maxint = ; int dit[], two[]; int gao(int x)
{
two[] = ;
for (int i = ; i < ; ++ i)
two[i] = two[i-] * ; int len = ;
while (x){
dit[len++] = x % ;
x /= ;
} int ret = ;
for (int i = ; i < len; ++ i)
ret += two[i];
for (int i = len-; i >= ; -- i){
if ( < dit[i]) ret += two[i];
if ( < dit[i]) ret += two[i];
if (dit[i] != && dit[i] != ) break;
}
return ret;
} class TheLuckyNumbers
{
public:
int count(int a, int b){
return gao(b+) - gao(a);
} // BEGIN CUT HERE
public:
void run_test(int Case) { if ((Case == -) || (Case == )) test_case_0(); if ((Case == -) || (Case == )) test_case_1(); if ((Case == -) || (Case == )) test_case_2(); if ((Case == -) || (Case == )) test_case_3(); }
private:
template <typename T> string print_array(const vector<T> &V) { ostringstream os; os << "{ "; for (typename vector<T>::const_iterator iter = V.begin(); iter != V.end(); ++iter) os << '\"' << *iter << "\","; os << " }"; return os.str(); }
void verify_case(int Case, const int &Expected, const int &Received) { cerr << "Test Case #" << Case << "..."; if (Expected == Received) cerr << "PASSED" << endl; else { cerr << "FAILED" << endl; cerr << "\tExpected: \"" << Expected << '\"' << endl; cerr << "\tReceived: \"" << Received << '\"' << endl; } }
void test_case_0() { int Arg0 = ; int Arg1 = ; int Arg2 = ; verify_case(, Arg2, count(Arg0, Arg1)); }
void test_case_1() { int Arg0 = ; int Arg1 = ; int Arg2 = ; verify_case(, Arg2, count(Arg0, Arg1)); }
void test_case_2() { int Arg0 = ; int Arg1 = ; int Arg2 = ; verify_case(, Arg2, count(Arg0, Arg1)); }
void test_case_3() { int Arg0 = ; int Arg1 = ; int Arg2 = ; verify_case(, Arg2, count(Arg0, Arg1)); } // END CUT HERE }; // BEGIN CUT HERE
int main()
{
// freopen( "a.out" , "w" , stdout );
TheLuckyNumbers ___test;
___test.run_test(-);
return ;
}
// END CUT HERE
DIV1 500pt
题意:称各个数位只含有4和7的数为lucky number,称完全由来自vector<int> numbers(含有lucky number和也含有unlucky number)里面的lucky number组成,且每一个a[i]的末位数字和a[i+1]的首位数字均相同的序列为lucky sequence。给定vector<int> numbers和int n,求长度为n的lucky sequence有多少个。只要一个数不同,则lucky sequence视为不同。
解法:lucky number分为四种,分别为4开头4结尾的,4开头7结尾的,7开头4结尾的,7开头7结尾的。若a[i]属于第A类,且a[i+1]可以为B类,则从A向B连接一条有向边。这样,就相当于求长度为n的路径有多少条。
我最初的想法是二分,设f(x, s, e)表示求长度为x,从s类开始,从e类结束的路径有多少条,f(x, s, e)由 f(x/2, s, i) 和 f(x-x/2, i, e)求得。我以为这样二分以后时间复杂度降低了,实际上每次二分都有4个决策,时间复杂度反而提升了,于是我毫无悬念地TLE了。然后,我改了代码,把x / 2变成了x / 10000,即将x分为10001段来求,由于前面每一段长度均为x/10000,后面一段长度为x - x/10000,所以实际上只需要求20个东西,这样时间复杂度就降低到能接受的范围了。
虽然算是水过了这道题,还是蛮开心的.....
官方题解给出的方法是用矩阵快速幂优化。其实要构造这个并不难吧。。。当时想了一下用矩阵,怎么就没想出来呢。。。。
tag:矩阵乘法
// BEGIN CUT HERE
/*
* Author: plum rain
* score :
*/
/* */
// END CUT HERE
#line 11 "TheLuckySequence.cpp"
#include <sstream>
#include <stdexcept>
#include <functional>
#include <iomanip>
#include <numeric>
#include <fstream>
#include <cctype>
#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <cstdlib>
#include <set>
#include <queue>
#include <bitset>
#include <list>
#include <string>
#include <utility>
#include <map>
#include <ctime>
#include <stack> using namespace std; #define CLR(x) memset(x, 0, sizeof(x))
#define CLR1(x) memset(x, -1, sizeof(x))
#define PB push_back
#define SZ(v) ((int)(v).size())
#define ALL(t) t.begin(),t.end()
#define zero(x) (((x)>0?(x):-(x))<eps)
#define out(x) cout<<#x<<":"<<(x)<<endl
#define tst(a) cout<<#a<<endl
#define CINBEQUICKER std::ios::sync_with_stdio(false) typedef vector<int> VI;
typedef vector<string> VS;
typedef vector<double> VD;
typedef pair<int, int> pii;
typedef long long int64; const double eps = 1e-;
const double PI = atan(1.0)*;
const int maxint = ;
const int mod = ; int64 cnt[];
pii temp[];
set<int> st;
int64 pat[][], d[][][];
int64 an[][]; int gao(int x)
{
pii num;
num.second = x % ;
while (x >= ){
int tmp = x % ;
x /= ;
if (tmp != && tmp != ) return -;
}
num.first = x % ;
for (int i = ; i < ; ++ i)
if (num == temp[i]) return i;
return -;
} int64 rec(int len, int s, int e)
{
if (!len) return s == e;
if (len == ) return pat[s][e]; if (len < && d[len][s][e] != -)
return d[len][s][e]; if (len < ){
int haf = len / ;
int64 &ret = d[len][s][e];
ret = ;
for (int i = ; i < ; ++ i)
ret = (ret + rec(haf, s, i) * rec(len-haf, i, e)) % mod;
return ret;
} int haf = len / ;
CLR (an);
for (int i = ; i < ; ++ i)
an[][i] = rec(haf, s, i);
for (int i = ; i < ; ++ i)
for (int j = ; j < ; ++ j)
for (int k = ; k < ; ++ k)
an[i][j] = (an[i][j] + an[i-][k] * rec(haf, k, j)) % mod;
int64 ret = ;
for (int i = ; i < ; ++ i)
ret = (ret + an[][i] * rec(len-haf*, i, e)) % mod;
return ret;
} class TheLuckySequence
{
public:
int count(vector <int> num, int len){
temp[] = make_pair(,); temp[] = make_pair(,);
temp[] = make_pair(,); temp[] = make_pair(,); CLR (cnt); st.clear();
for (int i = ; i < (int)num.size(); ++ i){
int tmp = gao(num[i]);
if (tmp != - && !st.count(num[i])){
++ cnt[tmp];
st.insert(num[i]);
}
}
CLR (pat);
for (int i = ; i < ; ++ i)
for (int j = ; j < ; ++ j)
if (temp[i].second == temp[j].first){
pat[i][j] = cnt[i];
} CLR1 (d);
int64 ret = ;
for (int i = ; i < ; ++ i)
for (int j = ; j < ; ++ j)
ret = (ret + rec(len-, i, j) * cnt[j]) % mod;
return (int)ret;
} // BEGIN CUT HERE
public:
void run_test(int Case) { if ((Case == -) || (Case == )) test_case_0(); if ((Case == -) || (Case == )) test_case_1(); if ((Case == -) || (Case == )) test_case_2(); if ((Case == -) || (Case == )) test_case_3(); }
private:
template <typename T> string print_array(const vector<T> &V) { ostringstream os; os << "{ "; for (typename vector<T>::const_iterator iter = V.begin(); iter != V.end(); ++iter) os << '\"' << *iter << "\","; os << " }"; return os.str(); }
void verify_case(int Case, const int &Expected, const int &Received) { cerr << "Test Case #" << Case << "..."; if (Expected == Received) cerr << "PASSED" << endl; else { cerr << "FAILED" << endl; cerr << "\tExpected: \"" << Expected << '\"' << endl; cerr << "\tReceived: \"" << Received << '\"' << endl; } }
void test_case_0() { int Arr0[] = {, , , , , , , }; vector <int> Arg0(Arr0, Arr0 + (sizeof(Arr0) / sizeof(Arr0[]))); int Arg1 = ; int Arg2 = ; verify_case(, Arg2, count(Arg0, Arg1)); }
void test_case_1() { int Arr0[] = {, , }; vector <int> Arg0(Arr0, Arr0 + (sizeof(Arr0) / sizeof(Arr0[]))); int Arg1 = ; int Arg2 = ; verify_case(, Arg2, count(Arg0, Arg1)); }
void test_case_2() { int Arr0[] = {, , , , }; vector <int> Arg0(Arr0, Arr0 + (sizeof(Arr0) / sizeof(Arr0[]))); int Arg1 = ; int Arg2 = ; verify_case(, Arg2, count(Arg0, Arg1)); }
void test_case_3() { int Arr0[] = {, , , }; vector <int> Arg0(Arr0, Arr0 + (sizeof(Arr0) / sizeof(Arr0[]))); int Arg1 = ; int Arg2 = ; verify_case(, Arg2, count(Arg0, Arg1)); } // END CUT HERE }; // BEGIN CUT HERE
int main()
{
// freopen( "a.out" , "w" , stdout );
TheLuckySequence ___test;
___test.run_test(-);
return ;
}
// END CUT HERE
SRM 403(1-250pt, 1-500pt)的更多相关文章
- SRM475 - SRM479(1-250pt,500pt)
SRM 475 DIV1 300pt 题意:玩游戏.给一个棋盘,它有1×n(1行n列,每列标号分别为0,1,2..n-1)的格子,每个格子里面可以放一个棋子,并且给定一个只含三个字母WBR,长度为n的 ...
- SRM468 - SRM469(1-250pt, 500pt)
SRM 468 DIV1 250pt 题意:给出字典,按照一定要求进行查找. 解法:模拟题,暴力即可. tag:water score: 0.... 这是第一次AC的代码: /* * Author: ...
- SRM470 - SRM474(1-250pt,500pt)(471-500pt为最短路,474-500pt未做)
SRM 470 DIV1 250pt 题意:有n个房间排成一排,相邻两个房间之间有一扇关闭着的门(共n-1扇),每个门上都标有‘A’-‘P’的大写字母.给定一个数n,表示第n个房间.有两个人John和 ...
- SRM593(1-250pt,500pt)
SRM 593 DIV1 250pt 题意:有如下图所示的平面,每个六边形有坐标.将其中一些六边形染色,要求有边相邻的两个六边形不能染同一种颜色.给定哪些六边形需要染色,问最少需要多少种颜色. 解法: ...
- topcoder srm 553
div1 250pt: 题意:... 解法:先假设空出来的位置是0,然后模拟一次看看是不是满足,如果不行的话,我们只需要关心最后栈顶的元素取值是不是受空白处的影响,于是还是模拟一下. // BEGIN ...
- topcoder srm 552
div1 250pt: 题意:用RGB三种颜色的球摆N层的三角形,要求相邻的不同色,给出RGB的数量,问最多能摆几个 解法:三种颜色的数量要么是全一样,要么是两个一样,另外一个比他们多一个,于是可以分 ...
- topcoder srm 551
div1 250pt 题意:一个长度最多50的字符串,每次操作可以交换相邻的两个字符,问,经过最多MaxSwaps次交换之后,最多能让多少个相同的字符连起来 解法:对于每种字符,枚举一个“集结点”,让 ...
- topcoder srm 550
div1 250pt: 题意:有个机器人,从某一点出发,他只有碰到地形边缘或者碰到走过的点时才会改变运动方向,然后接着走,现在给出他的运动轨迹,判断他的运动是否合法,如果合法的话,那么整个地形的最小面 ...
- topcoder srm 610
div1 250pt: 题意:100*100的01矩阵,找出来面积最大的“类似国际象棋棋盘”的子矩阵. 解法:枚举矩阵宽(水平方向)的起点和终点,然后利用尺取法来找到每个固定宽度下的最大矩阵,不断更新 ...
随机推荐
- C# 如何创建接口以及使用接口的简单Demo(转载!)
//No:1 首先,我们要封装一个接口,接口中不要实现具体的方法(说白了这就是一个架子而已!) using System;using System.Collections.Generic;using ...
- 菜鸟学开店—最简收银POS系统
佳博打印机代理商淘宝店https://shop107172033.taobao.com/index.htm?spm=2013.1.w5002-9520741823.2.Sqz8Pf 在此店购买的打印机 ...
- 【转】iOS-Core-Animation-Advanced-Techniques(二)
原文: http://www.cocoachina.com/ios/20150104/10816.html 视觉效果和变换 (四)视觉效果 嗯,园和椭圆还不错,但如果是带圆角的矩形呢? 我们现在能做到 ...
- NSString 的三种截取方法
1.定义一个字符串a, 截取a 的某一个项目组,复制给b, b必须是int型 NSString *a = @"1.2.30"; int b= [[a substringWithR ...
- Vijos1834 NOI2005 瑰丽华尔兹 动态规划 单调双端队列优化
设dp[t][x][y]表示处理完前t个时间段,钢琴停留在(x,y)处,最多可以走多少个格子 转移时只需逆着当前倾斜的方向统计len个格子(len为时间区间的长度,len=t-s+1),如果遇到障碍就 ...
- SGU 156. Strange Graph(欧拉路)
时间限制:0.25s 空间限制:6M 题目描述 让我们想象一个无向图G=<V,E>.如果边(u,v)在边集E中,那么我们就说两个顶点u和v是邻接点.在这种情况下,我们也说u是v的一个邻接点 ...
- centos7上安装与配置Tomcat7(整理篇)
1.检查tomcat7是否已经安装 rpm -qa | grep tomcat ps -ef | grep tomcat 第一条命令查看是用rpm安装过tomcat,由于我们倾向于安装解压版的tomc ...
- 浏览器中的WebSocket("ws://127.0.0.1:9988");
<script type="text/javascript"> function WebSocketTest() { if ("WebSocket" ...
- QTP的DataTable操作整理(注---不知转载多少遍)
返回值:数字 示例: 以下示例使用 GetRowCount 方法查找 MySheet 运行时数据表中最长的列中的总行数,并将其写入报告. rowcount = DataTable.GetSheet(& ...
- 工作总结:MFC调用Windows自带新建、保存对话框代码
保存: void CExample17Dlg::OnBnClickedSaveButton() { // TODO: Add your control notification handler cod ...