BZOJ 1237 配对
Description
你有\(n\)个整数\(A_{i}\)和\(n\)个整数\(B_{i}\)。你需要把它们配对,即每个\(A_{i}\)恰好对应一 个\(Bp_{i}\)。要求所有配对的整数差的绝对值之和尽量小,但不允许两个相同的数配对。例如\(A=\lbrace 5,6,8 \rbrace\),\(B=\lbrace 5,7,8 \rbrace\),则最优配对方案是\(5\)配\(8\),\(6\)配\(5\),\(8\)配\(7\),配对整数的差的绝对值分别为\(2, 2, 1\),和为\(5\)。注意,\(5\)配\(5\),\(6\)配\(7\),\(8\)配\(8\)是不允许的,因为相同的数不许配对。
Input
第一行为一个正整数\(n\),接下来是\(n\)行,每行两个整数\(A_{i}\)和\(B_{i}\),保证所有\(A_{i}\)各不相同,\(B_{i}\)也各不相同。
Output
输出一个整数,即配对整数的差的绝对值之和的最小值。如果无法配对,输出\(-1\)。
Sample Input
3
3 65
45 10
60 25
Sample Output
32
HINT
\(30\%\)的数据满足:\(n \le 10^{4}\)
\(100\%\)的数据满足:\(1 \le n \le 10^{5}\),\(A_{i}\)和\(B_{i}\)均为\(1\)到\(10^{6}\)之间的整数。
难得又一道自己想出的题目。
首先如果没有相同的数字不能同时配对,那么排序之后两两配对一定是最优的。那么我们在满足题目限制一定也要尽可能的满足题目的限制,相邻两个进行交换。
我们令\(pos_{i}\)表示前第\(i\)个排序后数字相同配对的位置,\(f_{i,0/1}\)表示前\(i\)个数字相同的配对,使其合法的最小增加代价(\(0\)表示与前面的交换,\(1\)表示与后面的交换)。转移有这样以下的几个:
\]
当\(pos_{i-1} \ge pos_{i}-1\)时$$f_{i,0} = f_{i-1,0}+calc(pos_{i}-1,pos_{i})$$
否则$$f_{i,0} = min(f_{i-1,0},f_{i-1,1})+calc(pos_{i}-1,pos_{i})$$
产生分歧的原因是如果\(pos_{i-1} \ge pos_{i}-1\),那么如果\(i-1\)号非法配对与右边的交换,\(i\)号与左边的交换代价计算就会出错。
当\(i \ge 2\)并且\(pos_{i}=pos_{i-1}+1\),我们可以两个非法的进行交换,得到以下的转移:
当\(pos_{i-2} \ge pos_{i-1}-1\)时,$$f_{i,0} = min(f_{i,0},f_{i-2,0}+calc(pos_{i-1},pos_{i}))$$
否则$$f_{i,0} = min(f_{i,0},min(f_{i-2,0},f_{i-2,1})+calc(pos_{i-1},pos_{i}))$$
分歧的原因同上。
以上转移\(calc(a,b)\)为计算交换\(a,b\)位置增加代价的函数。
#include<cstring>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std;
typedef long long ll;
#define inf (1LL<<60)
#define maxn 100010
int n,pos[maxn],tot; ll sum,A[maxn],B[maxn],f[maxn][2];
inline ll calc(int a,int b)
{
if (!a||!b) return inf; if (a > n||b > n) return inf;
return (abs(A[a]-B[b])+abs(A[b]-B[a]))-(abs(A[a]-B[a])+abs(A[b]-B[b]));
}
inline void dp()
{
memset(f,0x7,sizeof(f));
f[0][0] = f[0][1] = 0;
for (int i = 1;i <= tot;++i)
{
f[i][1] = min(f[i-1][0],f[i-1][1])+calc(pos[i],pos[i]+1);
if (pos[i-1]<pos[i]-1) f[i][0] = min(f[i-1][0],f[i-1][1])+calc(pos[i]-1,pos[i]);
else f[i][0] = f[i-1][0]+calc(pos[i]-1,pos[i]);
if (i >= 2&&pos[i] == pos[i-1]+1)
{
if (pos[i-2]<pos[i-1]-1) f[i][0] = min(f[i][0],min(f[i-2][0],f[i-2][1])+calc(pos[i-1],pos[i]));
else f[i][0] = min(f[i][0],f[i-2][0]+calc(pos[i-1],pos[i]));
}
}
}
int main()
{
freopen("1237.in","r",stdin);
freopen("1237.out","w",stdout);
scanf("%d",&n); for (int i = 1;i <= n;++i) scanf("%lld %lld",A+i,B+i);
A[0] = A[n+1] = inf; pos[0] = -100;
sort(A+1,A+n+1); sort(B+1,B+n+1);
for (int i = 1;i <= n;++i)
{
sum += abs((A[i]-B[i]));
if (A[i] == B[i]) pos[++tot] = i;
}
dp(); printf("%lld",sum+min(f[tot][0],f[tot][1]));
fclose(stdin); fclose(stdout);
return 0;
}
BZOJ 1237 配对的更多相关文章
- BZOJ 1237 配对(DP)
给出两个长度为n的序列.这两个序列的数字可以连边当且仅当它们不同,权值为它们的绝对值,求出这个二分图的最小权值完全匹配.没有输出-1. n<=1e5.用KM会TLE+MLE. 如果连边没有限制的 ...
- bzoj 1237 [SCOI2008]配对 贪心+dp
思路:dp[ i ] 表示 排序后前 i 个元素匹配的最小值, 我们可以发现每个点和它匹配的点的距离不会超过2,这样就能转移啦. #include<bits/stdc++.h> #defi ...
- BZOJ 1786 配对(DP)
如果我们直接令dp[i][j]为前i个位置第i个位置填j所产生的逆序对的最少数.这样是不满足无后效性的. 但是如果发现对于两个-1,如果前面的-1填的数要大于后面的-1填的数.容易证明把他们两交换结果 ...
- dp专练
dp练习. codevs 1048 石子归并 区间dp #include<cstdio> #include<algorithm> #include<cstring> ...
- bzoj千题计划179:bzoj1237: [SCOI2008]配对
http://www.lydsy.com/JudgeOnline/problem.php?id=1237 如果没有相同的数不能配对的限制 那就是排好序后 Σ abs(ai-bi) 相同的数不能配对 交 ...
- BZOJ 4205: 卡牌配对
4205: 卡牌配对 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 173 Solved: 76[Submit][Status][Discuss] ...
- 图论(费用流):BZOJ 4514 [Sdoi2016]数字配对
4514: [Sdoi2016]数字配对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 820 Solved: 345[Submit][Status ...
- BZOJ 4514: [Sdoi2016]数字配对 [费用流 数论]
4514: [Sdoi2016]数字配对 题意: 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数 ...
- BZOJ.4514.[SDOI2016]数字配对(费用流SPFA 二分图)
BZOJ 洛谷 \(Solution\) 很显然的建二分图后跑最大费用流,但有个问题是一个数是只能用一次的,这样二分图两部分都有这个数. 那么就用两倍的.如果\(i\)可以向\(j'\)连边,\(j\ ...
随机推荐
- tabhost中setup()和setup(LocalActivityManager activityGroup)
如果用系统默认的tabhost时, 直接用getTabhost()初始化,整个类继承tabActivity. 当没有选择系统tabhost默认id时,而是自己定义的id时,必须使用 findViewB ...
- QT实现多语言切换
功能需求: 网盘客户端要能够实现多国语言的切换,第一版要支持中.英文的切换.在实现过程中感觉QT对多国语言的支持还是很不错的,制作多语言包很方便,切换的逻辑也很简单.下面就来看一下QT中如何制作多语言 ...
- hadoop错误INFO util.NativeCodeLoader - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
报如下错误: 解决方法: 1.增加调试信息 在HADOOP_HOME/etc/hadoop/hadoop-env.sh文件中添加如下信息 2.再执行一次操作,看看报什么错误 上面信息显示,需要2.14 ...
- cocos2dx 2.14使用UUID
1首先要清楚objective-c 与c/ c++混编的规则 关于c/c++/obj-c的混合使用 1)obj-c的编译器处理后缀为m的文件时,可以识别obj-c和c的代码,处理mm文件可以识别obj ...
- ubuntu14.04使用root用户登录桌面 分类: 学习笔记 linux ubuntu 2015-07-05 10:30 199人阅读 评论(0) 收藏
ubuntu安装好之后,默认是不能用root用户登录桌面的,只能使用普通用户或者访客登录.怎样开启root用户登录桌面呢? 先用普通用户登录,然后切换到root用户,然后执行如下命令: vi /usr ...
- 字符串反转实现(C++)
字符串反转 C++实现,不使用系统函数: // ReverseString.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include ...
- spring参数类型异常输出(二), SpringMvc参数类型转换错误输出(二)
spring参数类型异常输出(二), SpringMvc参数类型转换错误输出(二) >>>>>>>>>>>>>>&g ...
- css标准导航代码
<!-- 例子解析: --> --> <!-- list-style-type:none - 移除列表前小标志.一个导航栏并不需要列表标记 --> <!-- 移除浏 ...
- C#磁盘遍历——递归
static void Main(string[] args) { //创建秒表,记录查询的总时间 Stopwatch timer = new Stopwatch(); timer.Start(); ...
- c语言学习之基础知识点介绍(七):循环结构
本节主要介绍循环结构 一.while循环 /* 语法: while(表达式){ //循环体; } 注意:循环变量.循环条件和循环控制语句三者缺一不可. 例如: */ ; //循环变量 ){ //循环条 ...