Description

FJ打算好好修一下农场中某条凹凸不平的土路。按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中。 整条路被分成了N段,N个整数A_1, ... , A_N (1 <= N <= 2,000)依次描述了每一段路的高度(0 <= A_i <= 1,000,000,000)。FJ希望找到一个恰好含N个元素的不上升或不下降序列B_1, ... , B_N,作为修过的路中每个路段的高度。由于将每一段路垫高或挖低一个单位的花费相同,修路的总支出可以表示为: |A_1 - B_1| + |A_2 - B_2| + ... + |A_N - B_N| 请你计算一下,FJ在这项工程上的最小支出是多少。FJ向你保证,这个支出不会超过2^31-1。

Input

* 第1行: 输入1个整数:N * 第2..N+1行: 第i+1行为1个整数:A_i

Output

* 第1行: 输出1个正整数,表示FJ把路修成高度不上升或高度不下降的最小花费

题解:

以不下降序列为例,定义F[i][j]为第i个数调整为高度等于或小于j时的最小支出。

于是有F[i][j]=min{F[i-1][j]+abs(h[i]-j),F[i][j-1]}.

需要离散化。

ans=F[n][MAX]

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
//by zrt
//problem:
using namespace std;
int c[2005];
int a[2005];
int cc;
int n;
int f[2005][2005];
bool cmp(int a,int b){
return a>b;
}
int main(){
#ifdef LOCAL
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
c[i]=a[i];
}
sort(c+1,c+n+1);
cc=unique(c+1,c+n+1)-(c+1);
for(int i=1;i<=n;i++) f[i][0]=1<<30;
for(int i=1;i<=n;i++){
for(int j=1;j<=cc;j++){
f[i][j]=f[i-1][j]+abs(a[i]-c[j]);
f[i][j]=min(f[i][j],f[i][j-1]);
}
}
int ans=f[n][cc];
sort(c+1,c+cc+1,cmp);
for(int i=1;i<=n;i++) f[i][0]=1<<30;
for(int i=1;i<=n;i++){
for(int j=1;j<=cc;j++){
f[i][j]=f[i-1][j]+abs(a[i]-c[j]);
f[i][j]=min(f[i][j],f[i][j-1]);
}
}
ans=min(f[n][cc],ans);
printf("%d\n",ans);
return 0;
}

BZOJ 1592: [Usaco2008 Feb]Making the Grade 路面修整的更多相关文章

  1. BZOJ 1592: [Usaco2008 Feb]Making the Grade 路面修整( dp )

    最优的做法最后路面的高度一定是原来某一路面的高度. dp(x, t) = min{ dp(x - 1, k) } + | H[x] - h(t) | ( 1 <= k <= t ) 表示前 ...

  2. bzoj 1592: [Usaco2008 Feb]Making the Grade 路面修整【dp】

    因为是单调不降或单调不升,所以所有的bi如果都是ai中出现过的一定不会变差 以递增为例,设f[i][j]为第j段选第i大的高度,预处理出s[i][j]表示选第i大的时,前j个 a与第i大的值的差的绝对 ...

  3. 1592: [Usaco2008 Feb]Making the Grade 路面修整

    1592: [Usaco2008 Feb]Making the Grade 路面修整 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 428  Solv ...

  4. 【BZOJ】1592: [Usaco2008 Feb]Making the Grade 路面修整

    [算法]动态规划DP [题解] 题目要求不严格递增或不严格递减. 首先修改后的数字一定是原来出现过的数字,这样就可以离散化. f[i][j]表示前i个,第i个修改为第j个数字的最小代价,a表示排序后数 ...

  5. 【BZOJ 1592】[Usaco2008 Feb]Making the Grade 路面修整 dp优化之转移变状态

    我们感性可证离散(不离散没法做),于是我们就有了状态转移的思路(我们只考虑单不减另一个同理),f[i][j]到了第i块高度为j的最小话费,于是我们就可以发现f[i][j]=Min(f[i-1][k]) ...

  6. 【贪心】bzoj1592: [Usaco2008 Feb]Making the Grade 路面修整

    贪心的经典套路:替换思想:有点抽象 Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也 就是说,高度上升与高度下降的路段不能 ...

  7. 2014.6.14模拟赛【bzoj1592】[Usaco2008 Feb]Making the Grade 路面修整

    Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了 ...

  8. 【bzoj1592】[Usaco2008 Feb]Making the Grade 路面修整

    FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了N段,N个整数A_1, ...

  9. BZOJ1592 POJ3666 [Usaco2008 Feb]Making the Grade 路面修整 左偏树 可并堆

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ3666 题目传送门 - BZOJ1592 题意概括 整条路被分成了N段,N个整数A_1, ... , ...

随机推荐

  1. [转] 引用 Java自带的线程池ThreadPoolExecutor详细介绍说明和实例应用

    PS: Spring ThreadPoolTaskExecutor vs Java Executorservice cachedthreadpool 引用 [轰隆隆] 的 Java自带的线程池Thre ...

  2. SqlBulkCopy高效能批量插入SQL SERVER

    what SqlBulkCopy是.NET提供的用来批量插入数据的一个类,特别是将内存中的数据一次性插入到数据库,目前只能插入到SQL SERVER数据库,数据源可以是DataTable.IDataR ...

  3. select组件

    <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/ ...

  4. asp.net下载的方法

    public void DownLoad( ){ string filePath = Server.MapPath( @"\UserFile\" );//这里注意了,你得指明要下载 ...

  5. iOS之定位与地图

    概览 现在很多社交.电商.团购应用都引入了地图和定位功能,似乎地图功能不再是地图应用 和导航应用所特有的.的确,有了地图和定位功能确实让我们的生活更加丰富多彩,极大的改变了我们的生活方式.例如你到了一 ...

  6. [翻译]Python with 语句

    With语句是什么? Python's with statement provides a very convenient way of dealing with the situation wher ...

  7. 《c和指针》1.5编程练习问题

    <c和指针>1.5编程练习问题 #include<stdio.h>#include<stdlib.h>#include<string.h>#define ...

  8. synchronized关键字小结(一)

    1. synchronized同步方法 1) synchronized修饰方法,表示方法是同步的,当某线程进入并拿到当前整个对象的锁时 a. 其他synchronized方法排队等锁 b. 非sync ...

  9. Unity3D 之UGUI 面板

    UGUI中使用面板,可以对一组控件分为一个组. 一个面板里面可以添加一些控件,就如同Html中的<div>一样.

  10. 解决Win10 SVN图标不显示问题

    进入注册表HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\ShellIconOverlayIdentifie ...