GCD

描述

The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.

(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:

Given integers N and M,please answer sum of X satisfies 1<=X<=N and (X,N)>=M.

输入

The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (1<=N<=10^9, 1<=M<=10^9), representing a test case.

输出

Output the answer mod 1000000007

样例输入

3

1 1

10 2

10000 72

样例输出

1

35

1305000

#include<map>
#include<set>
#include<queue>
#include<stack>
#include<vector>
#include<math.h>
#include<cstdio>
#include<sstream>
#include<numeric>//STL数值算法头文件
#include<stdlib.h>
#include <ctype.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<functional>//模板类头文件
using namespace std; typedef long long ll;
const int maxn=1001;
const int INF=0x3f3f3f3f; const int mod=1000000007; ll Euler(ll n)//欧拉函数 求φ(n)
{
ll c=n,i;
for(i=2; i*i<=n; i++)
{
if(n%i==0)
{
while(n%i==0) n/=i;
c=c/i*(i-1);//φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn);
}
}
if(n!=1)
c=c/n*(n-1);
return c;
}
//计算满足条件 gcd(x,n)>=m的所有 x 的和
ll Euler_sum(ll k)
{
if(k==1||k==2)
return 1;
else return k*Euler(k)/2;
} int main()
{
int cnt;
ll t,n,m;
scanf("%lld",&t);
while(t--)
{
ll i,sum=0;
scanf("%lld %lld",&n,&m);
for(i=1; i<=sqrt(n); i++)
{
if(n%i==0)
{
if(i>=m)//计算满足条件 >=m 的 i( i 一定是n的因子)
{
sum=(sum+i*Euler_sum(n/i))%mod;
}
//为了防止一种特殊情况才有 i*i!=n, 比如 16 4 这一组,如果没有判断条件就会在i=4的时候计算两次
if(i*i!=n&&n/i>=m)//计算满足条件 >=m 的 n/i ( n/i 也一定是n的因子)
{
//按步骤走这里有两种情况:(1)i和n/i都满足>=m的条件(2)i不满足>=m但是n/i满足
//不管哪种情况如果n/i满足>=m就往下走
sum=(sum+n/i*Euler_sum(i))%mod;
}
}
}
printf("%lld\n",sum);
}
return 0;
}

nyoj 1007 GCD(数学题 欧拉函数的应用)的更多相关文章

  1. hdu2588 GCD (欧拉函数)

    GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数.  (文末有题) 知 ...

  2. uva11426 gcd、欧拉函数

    题意:给出N,求所有满足i<j<=N的gcd(i,j)之和 这题去年做过一次... 设f(n)=gcd(1,n)+gcd(2,n)+......+gcd(n-1,n),那么answer=S ...

  3. HDU 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  4. HDU 1787 GCD Again(欧拉函数,水题)

    GCD Again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  5. hdu 4983 Goffi and GCD(欧拉函数)

    Problem Description Goffi is doing his math homework and he finds an equality on his text book: gcd( ...

  6. hdu 1695 GCD(欧拉函数+容斥)

    Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD( ...

  7. HDU 1695 GCD(欧拉函数+容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...

  8. GCD(欧拉函数)

    GCD Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissio ...

  9. HDU 2588 GCD(欧拉函数)

    GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

随机推荐

  1. Ant复制文件

    <?xml version="1.0" encoding="UTF-8"?> <project name ="test" ...

  2. Large Class--过大的类--要重构的信号

    如果想利用单个类做太多事情,其内往往就会出现太多实例变量.一旦如此,Duplicated Code也就接踵而至.     解决方法:     1.将类内彼此相关的变量,将它们放在一起.使用Extrac ...

  3. Item 3 ------单例模式的几种实现方式,及优缺点

    单例模式,是指一个类只有一个唯一的实例,一个类只会被实例化一次.实现这种效果,最佳的方式,编写包含单个元素的枚举类型. 单例模式的最佳实现方式-----创建一个包含单个元素的枚举类 public en ...

  4. 前端&后端程序员必备的Linux基础知识

    一 从认识操作系统开始 1.1 操作系统简介 我通过以下四点介绍什么操作系统: 操作系统(Operation System,简称OS)是管理计算机硬件与软件资源的程序,是计算机系统的内核与基石: 操作 ...

  5. 打开Android系统安装APK的页面

    //使用隐式意图开启安装APK的Activity Intent intent = new Intent("android.intent.action.VIEW"); intent. ...

  6. CursorFileManager对cursor文件的读写

    public class CursorFileManager implements CursorManager{public void write(String key, LongCursor cur ...

  7. Python模块学习 - pyinotify

    pyinotify介绍 pyinotify模块用来监测文件系统的变化,依赖于Linux内核的inotify功能,inotify是一个事件驱动的通知器,其通知接口从内核空间到用户空间通过三个系统调用.p ...

  8. Python模块学习 - click

    Click模块 click模块是Flask的作者开发的一个第三方模块,用于快速创建命令行.它的作用与Python标准库的argparse相同,但是,使用起来更简单. click是一个第三方库,因此使用 ...

  9. android 内核调试

    这篇文档给出使用android emulator 和 arm-linux-androideabi-gdb 调试 android kernel 的方法 1. checkout goldfish 源码: ...

  10. Linux Platform驱动模型(二) _驱动方法【转】

    转自:http://www.cnblogs.com/xiaojiang1025/archive/2017/02/06/6367910.html 在Linux设备树语法详解和Linux Platform ...