nyoj 1007 GCD(数学题 欧拉函数的应用)
GCD
描述
The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M,please answer sum of X satisfies 1<=X<=N and (X,N)>=M.
输入
The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (1<=N<=10^9, 1<=M<=10^9), representing a test case.
输出
Output the answer mod 1000000007
样例输入
3
1 1
10 2
10000 72
样例输出
1
35
1305000
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<vector>
#include<math.h>
#include<cstdio>
#include<sstream>
#include<numeric>//STL数值算法头文件
#include<stdlib.h>
#include <ctype.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<functional>//模板类头文件
using namespace std;
typedef long long ll;
const int maxn=1001;
const int INF=0x3f3f3f3f;
const int mod=1000000007;
ll Euler(ll n)//欧拉函数 求φ(n)
{
ll c=n,i;
for(i=2; i*i<=n; i++)
{
if(n%i==0)
{
while(n%i==0) n/=i;
c=c/i*(i-1);//φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn);
}
}
if(n!=1)
c=c/n*(n-1);
return c;
}
//计算满足条件 gcd(x,n)>=m的所有 x 的和
ll Euler_sum(ll k)
{
if(k==1||k==2)
return 1;
else return k*Euler(k)/2;
}
int main()
{
int cnt;
ll t,n,m;
scanf("%lld",&t);
while(t--)
{
ll i,sum=0;
scanf("%lld %lld",&n,&m);
for(i=1; i<=sqrt(n); i++)
{
if(n%i==0)
{
if(i>=m)//计算满足条件 >=m 的 i( i 一定是n的因子)
{
sum=(sum+i*Euler_sum(n/i))%mod;
}
//为了防止一种特殊情况才有 i*i!=n, 比如 16 4 这一组,如果没有判断条件就会在i=4的时候计算两次
if(i*i!=n&&n/i>=m)//计算满足条件 >=m 的 n/i ( n/i 也一定是n的因子)
{
//按步骤走这里有两种情况:(1)i和n/i都满足>=m的条件(2)i不满足>=m但是n/i满足
//不管哪种情况如果n/i满足>=m就往下走
sum=(sum+n/i*Euler_sum(i))%mod;
}
}
}
printf("%lld\n",sum);
}
return 0;
}
nyoj 1007 GCD(数学题 欧拉函数的应用)的更多相关文章
- hdu2588 GCD (欧拉函数)
GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数. (文末有题) 知 ...
- uva11426 gcd、欧拉函数
题意:给出N,求所有满足i<j<=N的gcd(i,j)之和 这题去年做过一次... 设f(n)=gcd(1,n)+gcd(2,n)+......+gcd(n-1,n),那么answer=S ...
- HDU 1695 GCD (欧拉函数+容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1787 GCD Again(欧拉函数,水题)
GCD Again Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- hdu 4983 Goffi and GCD(欧拉函数)
Problem Description Goffi is doing his math homework and he finds an equality on his text book: gcd( ...
- hdu 1695 GCD(欧拉函数+容斥)
Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD( ...
- HDU 1695 GCD(欧拉函数+容斥原理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...
- GCD(欧拉函数)
GCD Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissio ...
- HDU 2588 GCD(欧拉函数)
GCD Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
随机推荐
- ssh连接提示 "Connection closed by remote host"
如果原来是可以用ssh连接的, 突然连接不上通常是连接数过多导致的. 解决方法一. 把SSH连接数改大 修改服务器上的这个文件:/etc/ssh/sshd_config 找到这行: # MaxSess ...
- new操作符的内部运行解析
在加上new操作符,我们就能完成传统面向对象的class + new的方式创建对象,在Javascript中,我们将这类方式成为Pseudoclassical. 基于上面的例子,我们执行如下代码 ...
- Edgware Feign hystrix-dashboard
相关依赖 <parent> <groupId>org.springframework.boot</groupId> <artifactId>spring ...
- O(1)时间复杂度实现入栈、出栈、获得栈中最小元素、获得栈中最大元素(转)
题目要求:定义栈的数据结构,添加min().max()函数(动态获取当前状态栈中的最小元素.最大元素),要求push().pop().min().max()的时间复杂度都是O(1). 思路解析:根据栈 ...
- parse_str
之前没有遇到过parse_str,其意思就是“把查询字符串解析到变量中”也就是$str会被解析为变量. <?php $data = "a=1&b=2";parse_s ...
- css 背景透明,文字不透明
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- 基础的语法知识(static关键字)
1.C++中的局部变量.全局变量.局部静态变量.全局静态变量的区别 局部变量(Local variables)与 全局变量: 在子程序或代码块中定义的变量称为局部变量,在程序的一开始定义的变量称为全局 ...
- OC 07 类的扩展
1.NSDate的使用 NSDate是Cocoa中⽤于处理⽇期和时间的基础类,封装了某⼀给定的时刻(含日期,时间,时区) 注意NSLog(@“%@”,nowDate);⽆论你是哪个时区的时间,打印时总 ...
- VPS性能测试方法小结(8)
1.为了能够得到更为准确和详细的有关VPS主机性能测试数据,我们应该多角度.全方位地运行多种VPS性能测试工具来进行检测,同时也要记得排除因本地网络环境而造成的数据结果的错误. 2.VPS主机性能跑分 ...
- memcache和redis的对比
1.memcache a.Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态.数据库驱动网站 ...