nyoj 1007 GCD(数学题 欧拉函数的应用)
GCD
描述
The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M,please answer sum of X satisfies 1<=X<=N and (X,N)>=M.
输入
The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (1<=N<=10^9, 1<=M<=10^9), representing a test case.
输出
Output the answer mod 1000000007
样例输入
3
1 1
10 2
10000 72
样例输出
1
35
1305000
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<vector>
#include<math.h>
#include<cstdio>
#include<sstream>
#include<numeric>//STL数值算法头文件
#include<stdlib.h>
#include <ctype.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<functional>//模板类头文件
using namespace std;
typedef long long ll;
const int maxn=1001;
const int INF=0x3f3f3f3f;
const int mod=1000000007;
ll Euler(ll n)//欧拉函数 求φ(n)
{
ll c=n,i;
for(i=2; i*i<=n; i++)
{
if(n%i==0)
{
while(n%i==0) n/=i;
c=c/i*(i-1);//φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn);
}
}
if(n!=1)
c=c/n*(n-1);
return c;
}
//计算满足条件 gcd(x,n)>=m的所有 x 的和
ll Euler_sum(ll k)
{
if(k==1||k==2)
return 1;
else return k*Euler(k)/2;
}
int main()
{
int cnt;
ll t,n,m;
scanf("%lld",&t);
while(t--)
{
ll i,sum=0;
scanf("%lld %lld",&n,&m);
for(i=1; i<=sqrt(n); i++)
{
if(n%i==0)
{
if(i>=m)//计算满足条件 >=m 的 i( i 一定是n的因子)
{
sum=(sum+i*Euler_sum(n/i))%mod;
}
//为了防止一种特殊情况才有 i*i!=n, 比如 16 4 这一组,如果没有判断条件就会在i=4的时候计算两次
if(i*i!=n&&n/i>=m)//计算满足条件 >=m 的 n/i ( n/i 也一定是n的因子)
{
//按步骤走这里有两种情况:(1)i和n/i都满足>=m的条件(2)i不满足>=m但是n/i满足
//不管哪种情况如果n/i满足>=m就往下走
sum=(sum+n/i*Euler_sum(i))%mod;
}
}
}
printf("%lld\n",sum);
}
return 0;
}
nyoj 1007 GCD(数学题 欧拉函数的应用)的更多相关文章
- hdu2588 GCD (欧拉函数)
GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数. (文末有题) 知 ...
- uva11426 gcd、欧拉函数
题意:给出N,求所有满足i<j<=N的gcd(i,j)之和 这题去年做过一次... 设f(n)=gcd(1,n)+gcd(2,n)+......+gcd(n-1,n),那么answer=S ...
- HDU 1695 GCD (欧拉函数+容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1787 GCD Again(欧拉函数,水题)
GCD Again Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- hdu 4983 Goffi and GCD(欧拉函数)
Problem Description Goffi is doing his math homework and he finds an equality on his text book: gcd( ...
- hdu 1695 GCD(欧拉函数+容斥)
Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD( ...
- HDU 1695 GCD(欧拉函数+容斥原理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...
- GCD(欧拉函数)
GCD Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissio ...
- HDU 2588 GCD(欧拉函数)
GCD Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
随机推荐
- Java 扑克牌发牌
今天看到这个算法题,http://www.cnblogs.com/xishuai/p/3392981.html ,忍不住自己用Java做了一个. 初始化很重要,所有的52张牌按顺序放入到容器里边,标志 ...
- hibernate单列的多值查询
比如你的表主键是id,你要删除id 是 34,56,99 这样的.. uid是拼好的 比如 '34','56','99' ,以前我会这样写 String queryString = "upd ...
- 关于ssh三大框架整合的碎碎念
三大框架整合,无非就是一个导jar包,修改配置文件的过程.完了就没事了. 还是有很多细节性的问题 比如在spring中写applicationContext.xml文件时不提示: 解决方法如下: 如果 ...
- linux编程之文件操作
在linux下用文件描述符来表示设备文件盒普通文件,文件描述符是一个整型的数据,所有对文件的操作都是通过文件描述符来实现的. 文件描述符是文件系统中连接用户空间和内核空间的枢纽,当我们打开一个或者创建 ...
- python爬虫模块之数据存储模块
数据存储模块的话,目前我这用的比较多的是存储到mysql,所以下面的这个例子也是保存到mysql,用到了ORM映射的SQLAlchemy ,(ORM:Object-Relational Mapping ...
- 【bzoj4896】补退选
傻逼题. 每个点维护下vector,然后随便做. #include<bits/stdc++.h> ; using namespace std; typedef long long ll; ...
- 2015多校第6场 HDU 5361 并查集,最短路
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5361 题意:有n个点1-n, 每个点到相邻点的距离是1,然后每个点可以通过花费c[i]的钱从i点走到距 ...
- Makefile 跟着走快点
引言 - 从"HelloWorld"开始 Makefile 是Linux C 程序开发最重要的基本功. 代表着整个项目编译和最终生成过程.本文重点是带大家了解真实项目中那些简易的 ...
- SQL快速入门 ( MySQL快速入门, MySQL参考, MySQL快速回顾 )
SQL 先说点废话,很久没发文了,整理了下自己当时入门 SQL 的笔记,无论用于入门,回顾,参考查询,应该都是有一定价值的,可以按照目录各取所需.SQL数据库有很多,MySQL是一种,本文基本都是SQ ...
- HDU 6166 Senior Pan (最短路变形)
题目链接 Problem Description Senior Pan fails in his discrete math exam again. So he asks Master ZKC to ...