nyoj 1007 GCD(数学题 欧拉函数的应用)
GCD
描述
The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M,please answer sum of X satisfies 1<=X<=N and (X,N)>=M.
输入
The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (1<=N<=10^9, 1<=M<=10^9), representing a test case.
输出
Output the answer mod 1000000007
样例输入
3
1 1
10 2
10000 72
样例输出
1
35
1305000
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<vector>
#include<math.h>
#include<cstdio>
#include<sstream>
#include<numeric>//STL数值算法头文件
#include<stdlib.h>
#include <ctype.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<functional>//模板类头文件
using namespace std;
typedef long long ll;
const int maxn=1001;
const int INF=0x3f3f3f3f;
const int mod=1000000007;
ll Euler(ll n)//欧拉函数 求φ(n)
{
ll c=n,i;
for(i=2; i*i<=n; i++)
{
if(n%i==0)
{
while(n%i==0) n/=i;
c=c/i*(i-1);//φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn);
}
}
if(n!=1)
c=c/n*(n-1);
return c;
}
//计算满足条件 gcd(x,n)>=m的所有 x 的和
ll Euler_sum(ll k)
{
if(k==1||k==2)
return 1;
else return k*Euler(k)/2;
}
int main()
{
int cnt;
ll t,n,m;
scanf("%lld",&t);
while(t--)
{
ll i,sum=0;
scanf("%lld %lld",&n,&m);
for(i=1; i<=sqrt(n); i++)
{
if(n%i==0)
{
if(i>=m)//计算满足条件 >=m 的 i( i 一定是n的因子)
{
sum=(sum+i*Euler_sum(n/i))%mod;
}
//为了防止一种特殊情况才有 i*i!=n, 比如 16 4 这一组,如果没有判断条件就会在i=4的时候计算两次
if(i*i!=n&&n/i>=m)//计算满足条件 >=m 的 n/i ( n/i 也一定是n的因子)
{
//按步骤走这里有两种情况:(1)i和n/i都满足>=m的条件(2)i不满足>=m但是n/i满足
//不管哪种情况如果n/i满足>=m就往下走
sum=(sum+n/i*Euler_sum(i))%mod;
}
}
}
printf("%lld\n",sum);
}
return 0;
}
nyoj 1007 GCD(数学题 欧拉函数的应用)的更多相关文章
- hdu2588 GCD (欧拉函数)
GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数. (文末有题) 知 ...
- uva11426 gcd、欧拉函数
题意:给出N,求所有满足i<j<=N的gcd(i,j)之和 这题去年做过一次... 设f(n)=gcd(1,n)+gcd(2,n)+......+gcd(n-1,n),那么answer=S ...
- HDU 1695 GCD (欧拉函数+容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1787 GCD Again(欧拉函数,水题)
GCD Again Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- hdu 4983 Goffi and GCD(欧拉函数)
Problem Description Goffi is doing his math homework and he finds an equality on his text book: gcd( ...
- hdu 1695 GCD(欧拉函数+容斥)
Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD( ...
- HDU 1695 GCD(欧拉函数+容斥原理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...
- GCD(欧拉函数)
GCD Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissio ...
- HDU 2588 GCD(欧拉函数)
GCD Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
随机推荐
- ReaderWriterLockSlim 类
今天在看Nop源码时,PluginManager中用到了ReaderWriterLockSlim类,于是简单做个笔记. ReaderWriterLockSlim 表示用于管理资源访问的锁定状态,可实现 ...
- Java中哈希表(Hashtable)是如何实现的
Java中哈希表(Hashtable)是如何实现的 Hashtable中有一个内部类Entry,用来保存单元数据,我们用来构建哈希表的每一个数据是Entry的一个实例.假设我们保存下面一组数据,第一列 ...
- .net XmlHelper xml帮助类
using System.Data; using System.IO; using System.Xml; using System.Xml.Serialization; /// <summar ...
- arch中yaourt的安装和使用
yaourt-Yet AnOther User Repository Tool Yaourt是archlinux方便使用的关键部件之一,但没有被整合到系统安装中的工具.建议在装完系统重启之后,更新完p ...
- python基础===PEP网站,代码规范指南
PEP 8是最古老的PEP之一,它向Python程序员提供了代码格式设置指南.PEP 8的篇幅很长,但大都与复杂的编码结构相关. https://python.org/dev/peps/pep-000 ...
- Canvas 高级
一.Canvas 高级 1.变换--位移 translate(x, y) 2.变换-缩放 scale(xS, yS) 3.变换-旋转 rotate(弧度) 4.环境的保存和释放 save() rest ...
- 在Xcode中使用自定义的代码片段提高效率
拖动代码的时候按住option键,很难拖,注意方法:< 引用于:http://www.2cto.com/kf/201409/336245.html
- FineReport——JS二次开发(复选框全选)
在进行查询结果选择的时候,我们经常会用到复选框控件,对于如何实现复选框全选,基本思路: 在复选框中的初始化事件中把控件加入到一个全局数组里,然后在全选复选框里对数组里的控件进行遍历赋值. 首先,定义两 ...
- 关于进度管理工具Gantt图
关于进度管理工具Gantt图 18.以下关于进度管理工具图的叙述中,不正确的是( D). A.能清晰地表达每个任务的开始时间.结束时间和持续时间 B.能清晰地表达任务之间的并行关系 C.不能清晰地确定 ...
- MAC 'readonly' option is set (add ! to override)错误解决
该错误为当前用户没有权限对文件作修改 输入 :w !sudo tee %