学习链接:http://blog.csdn.net/lwt36/article/details/48908031

学习扫描线主要学习的是一种扫描的思想,后期可以求解很多问题。

扫描线求矩形周长并

hdu 1928

Picture

Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4795    Accepted Submission(s): 2339

Problem Description
A number of rectangular posters, photographs and other pictures of the same shape are pasted on a wall. Their sides are all vertical or horizontal. Each rectangle can be partially or totally covered by the others. The length of the boundary of the union of all rectangles is called the perimeter.

Write a program to calculate the perimeter. An example with 7 rectangles is shown in Figure 1.

The corresponding boundary is the whole set of line segments drawn in Figure 2.

The vertices of all rectangles have integer coordinates.

 
Input
Your program is to read from standard input. The first line contains the number of rectangles pasted on the wall. In each of the subsequent lines, one can find the integer coordinates of the lower left vertex and the upper right vertex of each rectangle. The values of those coordinates are given as ordered pairs consisting of an x-coordinate followed by a y-coordinate.

0 <= number of rectangles < 5000 
All coordinates are in the range [-10000,10000] and any existing rectangle has a positive area.

Please process to the end of file.

 
Output
Your program is to write to standard output. The output must contain a single line with a non-negative integer which corresponds to the perimeter for the input rectangles.
 
Sample Input
7
-15 0 5 10
-5 8 20 25
15 -4 24 14
0 -6 16 4
2 15 10 22
30 10 36 20
34 0 40 16
 
Sample Output
228
 
Source
 
Recommend
linle
 
 

 
 
 
 //#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#define clr(x) memset(x,0,sizeof(x))
#define MAXN 50010
using namespace std;
struct edgx
{
int l,u,x;
int d;
}edgex[MAXN];
struct edgy
{
int l,r,y;
int d;
}edgey[MAXN];
struct seg
{
int l,r,cov,len;
}segt[MAXN<<];
int cntx,cnty;
int x[MAXN],y[MAXN],vec[MAXN];
bool cmpy(edgy a,edgy b)
{
if(a.y==b.y) return a.d>b.d;
return a.y<b.y;
}
bool cmpx(edgx a,edgx b)
{
if(a.x==b.x) return a.d>b.d;
return a.x<b.x;
}
void init(int i,int l,int r)
{
segt[i]=(seg){l,r,,};
if(l==r)
return ;
int mid=(l+r)>>;
init(i<<,l,mid);
init(i<<|,mid+,r);
return ;
}
void pushup(int i)
{
if(segt[i].cov)
{
segt[i].len=vec[segt[i].r+]-vec[segt[i].l];
}
else if(segt[i].l==segt[i].r)
{
segt[i].len=;
}
else
{
segt[i].len=segt[i<<].len+segt[i<<|].len;
}
return ;
}
void update(int i,int l,int r,int value)
{
if(segt[i].l>=l && segt[i].r<=r)
{
segt[i].cov+=value;
pushup(i);
return ;
}
int mid=(segt[i].l+segt[i].r)>>;
if(mid>=r)
{
update(i<<,l,r,value);
}
else if(mid<l)
{
update(i<<|,l,r,value);
}
else
{
update(i<<,l,r,value);
update(i<<|,l,r,value);
}
pushup(i);
return ;
}
int main()
{
int x1,x2,y1,y2,n,m,T,ans,l,r,k;
while(scanf("%d",&n)!=EOF)
{
cntx=;
cnty=;
for(int i=;i<=n;i++)
{
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
edgex[++cntx]=(edgx){y1,y2,x1,};
x[cntx]=x1;
edgex[++cntx]=(edgx){y1,y2,x2,-};
x[cntx]=x2;
edgey[++cnty]=(edgy){x1,x2,y1,};
y[cnty]=y1;
edgey[++cnty]=(edgy){x1,x2,y2,-};
y[cnty]=y2;
}
n<<=;
ans=;
memcpy(vec,x,sizeof(x));
sort(vec+,vec+n+);
m=unique(vec+,vec+n+)-vec-;
sort(edgey+,edgey+n+,cmpy);
init(,,m);
for(int i=;i<=n;i++)
if(edgey[i].l<edgey[i].r)
{
k=segt[].len;
l=lower_bound(vec+,vec+m+,edgey[i].l)-vec;
r=lower_bound(vec+,vec+m+,edgey[i].r)-vec;
update(,l,r-,edgey[i].d);
ans+=abs(segt[].len-k);
}
memcpy(vec,y,sizeof(y));
sort(vec+,vec+n+);
m=unique(vec+,vec+n+)-vec-;
sort(edgex+,edgex+n+,cmpx);
init(,,m);
for(int i=;i<=n;i++)
if(edgex[i].l<edgex[i].u)
{
k=segt[].len;
l=lower_bound(vec+,vec+m+,edgex[i].l)-vec;
r=lower_bound(vec+,vec+m+,edgex[i].u)-vec;
update(,l,r-,edgex[i].d);
ans+=abs(segt[].len-k);
}
printf("%d\n",ans);
}
return ;
}

hdu 1255 矩阵面积交

覆盖的面积

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5718    Accepted Submission(s): 2854

Problem Description
给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积.

 
Input
输入数据的第一行是一个正整数T(1<=T<=100),代表测试数据的数量.每个测试数据的第一行是一个正整数N(1<=N<=1000),代表矩形的数量,然后是N行数据,每一行包含四个浮点数,代表平面上的一个矩形的左上角坐标和右下角坐标,矩形的上下边和X轴平行,左右边和Y轴平行.坐标的范围从0到100000.

注意:本题的输入数据较多,推荐使用scanf读入数据.

 
Output
对于每组测试数据,请计算出被这些矩形覆盖过至少两次的区域的面积.结果保留两位小数.
 
Sample Input
2
5
1 1 4 2
1 3 3 7
2 1.5 5 4.5
3.5 1.25 7.5 4
6 3 10 7
3
0 0 1 1
1 0 2 1
2 0 3 1
 
Sample Output
7.63
0.00
 
Author
Ignatius.L & weigang Lee
 

 //#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#define clr(x) memset(x,0,sizeof(x))
#define MAXN 10010
using namespace std;
struct edg
{
double l,r,y;
int d;
}edge[MAXN];
struct seg
{
int l,r,cov;
double len1,len2;
}segt[MAXN<<];
int cnt;
double x[MAXN];
bool cmp(edg a,edg b)
{
if(a.y==b.y) return a.d>b.d;
return a.y<b.y;
}
double max(double a,double b)
{
return a>b?a:b;
}
void init(int i,int l,int r)
{
segt[i]=(seg){l,r,,,};
if(l==r)
return ;
int mid=(l+r)>>;
init(i<<,l,mid);
init(i<<|,mid+,r);
return ;
}
void pushup(int i)
{
if(segt[i].cov>=)
{
segt[i].len2=segt[i].len1=x[segt[i].r+]-x[segt[i].l];
}
else if(segt[i].cov==)
{
segt[i].len1=x[segt[i].r+]-x[segt[i].l];
if(segt[i].l==segt[i].r)
segt[i].len2=;
else
segt[i].len2=max(segt[i<<].len1,segt[i<<].len2)+max(segt[i<<|].len1,segt[i<<|].len2);
}
else
{
if(segt[i].l==segt[i].r)
{
segt[i].len1=segt[i].len2=;
}
else
{
segt[i].len2=segt[i<<].len2+segt[i<<|].len2;
segt[i].len1=segt[i<<].len1+segt[i<<|].len1;
}
}
return ;
}
void update(int i,int l,int r,int value)
{
if(segt[i].l>=l && segt[i].r<=r)
{
segt[i].cov+=value;
pushup(i);
return ;
}
int mid=(segt[i].l+segt[i].r)>>;
if(mid>=r)
{
update(i<<,l,r,value);
}
else if(mid<l)
{
update(i<<|,l,r,value);
}
else
{
update(i<<,l,r,value);
update(i<<|,l,r,value);
}
pushup(i);
return ;
}
int main()
{
int T,n,m,k,u,v;
double x1,x2,y1,y2,ans,l,r;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
cnt=;
ans=;
for(int i=;i<=n;i++)
{
scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
edge[++cnt]=(edg){x1,x2,y1,};
x[cnt]=x1;
edge[++cnt]=(edg){x1,x2,y2,-};
x[cnt]=x2;
}
n<<=;
sort(x+,x+n+);
m=unique(x+,x+n+)-x-;
sort(edge+,edge+n+,cmp);
init(,,m);
for(int i=;i<n;i++)
if(edge[i].r>edge[i].l)
{
l=lower_bound(x+,x+m+,edge[i].l)-x;
r=lower_bound(x+,x+m+,edge[i].r)-x;
update(,l,r-,edge[i].d);
ans+=segt[].len2*(edge[i+].y-edge[i].y);
}
printf("%0.2lf\n",ans);
}
return ;
}

hdu 1542 [POJ 1151] 区间面积并

Atlantis

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 12537    Accepted Submission(s): 5257

Problem Description
There are several ancient Greek texts that contain descriptions of the fabled island Atlantis. Some of these texts even include maps of parts of the island. But unfortunately, these maps describe different regions of Atlantis. Your friend Bill has to know the total area for which maps exist. You (unwisely) volunteered to write a program that calculates this quantity.
 
Input
The input file consists of several test cases. Each test case starts with a line containing a single integer n (1<=n<=100) of available maps. The n following lines describe one map each. Each of these lines contains four numbers x1;y1;x2;y2 (0<=x1<x2<=100000;0<=y1<y2<=100000), not necessarily integers. The values (x1; y1) and (x2;y2) are the coordinates of the top-left resp. bottom-right corner of the mapped area.

The input file is terminated by a line containing a single 0. Don’t process it.

 
Output
For each test case, your program should output one section. The first line of each section must be “Test case #k”, where k is the number of the test case (starting with 1). The second one must be “Total explored area: a”, where a is the total explored area (i.e. the area of the union of all rectangles in this test case), printed exact to two digits to the right of the decimal point.

Output a blank line after each test case.

 
Sample Input
2
10 10 20 20
15 15 25 25.5
0
 
Sample Output
Test case #1
Total explored area: 180.00
 
Source
 

卡格式,不说了,都是泪。
 //#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#define clr(x) memset(x,0,sizeof(x))
#define MAXN 10010
using namespace std;
struct edg
{
double l,r,y;
int d;
}edge[MAXN];
struct seg
{
int l,r,cov;
double len;
}segt[MAXN<<];
int cnt;
double x[MAXN];
bool cmp(edg a,edg b)
{
if(a.y==b.y) return a.d>b.d;
return a.y<b.y;
}
double max(double a,double b)
{
return a>b?a:b;
}
void init(int i,int l,int r)
{
segt[i]=(seg){l,r,,};
if(l==r)
return ;
int mid=(l+r)>>;
init(i<<,l,mid);
init(i<<|,mid+,r);
return ;
}
void pushup(int i)
{
if(segt[i].cov)
{
segt[i].len=x[segt[i].r+]-x[segt[i].l];
}
else if(segt[i].l==segt[i].r)
{
segt[i].len=;
}
else
{
segt[i].len=segt[i<<].len+segt[i<<|].len;
}
return ;
}
void update(int i,int l,int r,int value)
{
if(segt[i].l>=l && segt[i].r<=r)
{
segt[i].cov+=value;
pushup(i);
return ;
}
int mid=(segt[i].l+segt[i].r)>>;
if(mid>=r)
{
update(i<<,l,r,value);
}
else if(mid<l)
{
update(i<<|,l,r,value);
}
else
{
update(i<<,l,r,value);
update(i<<|,l,r,value);
}
pushup(i);
return ;
}
int main()
{
int T,n,m,k,u,v;
double x1,x2,y1,y2,ans,l,r;
int kase=;
while(scanf("%d",&n) && n!=)
{
printf("Test case #%d\n",++kase);
cnt=;
ans=;
for(int i=;i<=n;i++)
{
scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
edge[++cnt]=(edg){x1,x2,y1,};
x[cnt]=x1;
edge[++cnt]=(edg){x1,x2,y2,-};
x[cnt]=x2;
}
n<<=;
sort(x+,x+n+);
m=unique(x+,x+n+)-x-;
sort(edge+,edge+n+,cmp);
init(,,m);
for(int i=;i<n;i++)
if(edge[i].r>edge[i].l)
{
l=lower_bound(x+,x+m+,edge[i].l)-x;
r=lower_bound(x+,x+m+,edge[i].r)-x;
update(,l,r-,edge[i].d);
ans+=segt[].len*(edge[i+].y-edge[i].y);
}
printf("Total explored area: %0.2lf\n",ans);
printf("\n");
}
return ;
}

扫描线三巨头 hdu1928&&hdu 1255 && hdu 1542 [POJ 1151]的更多相关文章

  1. hdu 1542&&poj 1151 Atlantis[线段树+扫描线求矩形面积的并]

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  2. hdu 1542 & & poj 1151

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  3. HDU 1542/POJ 1151 Atlantis (scaning line + segment tree)

    A template of discretization + scaning line + segment tree. It's easy to understand, but a little di ...

  4. 线段树扫描线(一、Atlantis HDU - 1542(覆盖面积) 二、覆盖的面积 HDU - 1255(重叠两次的面积))

    扫描线求周长: hdu1828 Picture(线段树+扫描线+矩形周长) 参考链接:https://blog.csdn.net/konghhhhh/java/article/details/7823 ...

  5. HDU - 1255 覆盖的面积(线段树求矩形面积交 扫描线+离散化)

    链接:线段树求矩形面积并 扫描线+离散化 1.给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积. 2.看完线段树求矩形面积并 的方法后,再看这题,求的是矩形面积交,类同. 求面积时,用被覆 ...

  6. HDU 1255 覆盖的面积(线段树+扫描线)

    题目地址:HDU 1255 这题跟面积并的方法非常像,仅仅只是须要再加一个变量. 刚開始我以为直接用那个变量即可,仅仅只是推断是否大于0改成推断是否大于1.可是后来发现了个问题,由于这个没有下放,没延 ...

  7. hdu 1255 覆盖的面积(线段树 面积 交) (待整理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1255 Description 给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积.   In ...

  8. hdu 1255 覆盖的面积(求覆盖至少两次以上的面积)

    了校赛,还有什么途径可以申请加入ACM校队?  覆盖的面积 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  9. “三巨头”有变化,BAT还能走多久?

    在腾讯市值超越阿里巴巴后,市场分析多数认为,当年的BAT“三巨头”时代已经彻底结束,进入了“双寡头”时代了 从对外投资来看,BAT不同的投资逻辑可以推测其战略方向 撰文/梁云风 时评员,关注财经与互联 ...

随机推荐

  1. aspnet_regiis.exe -i 执行报错

    IIS刚部署时出现问题 处理程序“svc-Integrated”在其模块列表中有一个错误模块“ManagedPipelineHandler” 按照网上的步骤,使用管理员打开CMD 开始->所有程 ...

  2. spring-retry 重试机制

    业务场景 应用中需要实现一个功能: 需要将数据上传到远程存储服务,同时在返回处理成功情况下做其他操作.这个功能不复杂,分为两个步骤:第一步调用远程的Rest服务逻辑包装给处理方法返回处理结果:第二步拿 ...

  3. node遇到的一些坑,npm无反应,cordova安装以后显示不是内部或外部命令

    1.输入npm -v 以后一直无反应 C:\Users\用户名 目录下找到 .npmrc文件,删除以后,执行npm -v顺利显示版本号 2.安装cordova以后一直报错,不是内部或外部命令也不是可运 ...

  4. Bagging和Boosting 概念及区别(转)

    Bagging和Boosting都是将已有的分类或回归算法通过一定方式组合起来,形成一个性能更加强大的分类器,更准确的说这是一种分类算法的组装方法.即将弱分类器组装成强分类器的方法. 首先介绍Boot ...

  5. 【转】debian下的update-rc.d的使用

    在Linux系统下,一个Services的启动.停止以及重启通常是通过/etc/init.d目录下的脚本来控制的.然而,在启动或改变运行级别时, 是在/etc/rcX.d中来搜索脚本.其中X是运行级别 ...

  6. Python3 学习第一天总结

    一.python介绍 1.python是一门动态解释性的强类型定义语言: 简单解释一下: 定义变量不需要定义类型的为动态语言:典型的有Python和Ruby,反之定义变量需要定义类型的为静态语言:典型 ...

  7. centos7系统安装配置

    下载centos7 iso镜像 电脑里面本来有ubuntu系统,直接在u盘做好启动盘安装即可,选择手动分区(忘了),将原本ubuntu系统分区压缩200G.系统不要选择最小化,选择gnome的图形界面 ...

  8. JVM 类加载过程、初始化、主动引用、被动引用、静态初始化块执行顺序

  9. LeetCode Linked List Cyle

    Problem Description Given a linked list, determine if it has a cycle in it. Follow up:Can you solve ...

  10. [前端随笔][CSS] 制作一个加载动画 即帖即用

    说在前面 描述 [加载中loading...] 的动画图片往往使用GIF来实现,但GIF消耗资源较大,所以使用CSS直接制作更优. 效果传送门1 效果传送门2 关键代码 @keyframes 规则 用 ...