Problem Statement

Takahashi and Aoki are playing a stone-taking game. Initially, there are N piles of stones, and the i-th pile contains Ai stones and has an associated integer Ki.

Starting from Takahashi, Takahashi and Aoki take alternate turns to perform the following operation:

  • Choose a pile. If the i-th pile is selected and there are X stones left in the pile, remove some number of stones between 1 and floor(XKi) (inclusive) from the pile.

The player who first becomes unable to perform the operation loses the game. Assuming that both players play optimally, determine the winner of the game. Here, floor(x) represents the largest integer not greater than x.

Constraints

  • 1≤N≤200
  • 1≤Ai,Ki≤109
  • All input values are integers.

Input

Input is given from Standard Input in the following format:

N
A1 K1
:
AN KN

Output

If Takahashi will win, print Takahashi; if Aoki will win, print Aoki.

Sample Input 1

2
5 2
3 3

Sample Output 1

Aoki

Initially, from the first pile at most floor(5⁄2)=2 stones can be removed at a time, and from the second pile at most floor(3⁄3)=1 stone can be removed at a time.

  • If Takahashi first takes two stones from the first pile, from the first pile at most floor(3⁄2)=1 stone can now be removed at a time, and from the second pile at most floor(3⁄3)=1 stone can be removed at a time.
  • Then, if Aoki takes one stone from the second pile, from the first pile at most floor(3⁄2)=1 stone can be removed at a time, and from the second pile no more stones can be removed (since floor(2⁄3)=0).
  • Then, if Takahashi takes one stone from the first pile, from the first pile at most floor(2⁄2)=1 stone can now be removed at a time, and from the second pile no more stones can be removed.
  • Then, if Aoki takes one stone from the first pile, from the first pile at most floor(1⁄2)=0 stones can now be removed at a time, and from the second pile no more stones can be removed.

No more operation can be performed, thus Aoki wins. If Takahashi plays differently, Aoki can also win by play accordingly.

Sample Input 2

3
3 2
4 3
5 1

Sample Output 2

Takahashi

Sample Input 3

3
28 3
16 4
19 2

Sample Output 3

Aoki

Sample Input 4

4
3141 59
26535 897
93 23
8462 64

Sample Output 4

Takahashi

    这种题只能打表找规律啊QWQ
把k<=10,n<=30的sg函数打表出来,找了找规律,发现:
sg(x) = ( x%k==0 ? x/k : sg(x - x/k - 1) ) 当k比较小的时候,显然 x - x/k -1 的减小速率是非常快的,大致和k同阶(可能略大一点);
当k比较大的时候,可以发现在减小的过程中很多x/k都是一样的,并且一样的都是连续的,所以我们对于 x/k == i 可以计算出 x'/k 第一次 <i 的x'是哪个,因为x/k没减小1x减小的幅度大致是和k同阶的,所以总的复杂度就大致和 x/k同阶。。 因为不管k比较大还是比较小我们都可以连续一段处理,所以算一个sg函数的复杂度就是 min ( k , x/k ),大概是1e5级别的。。。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=205; int n,A,k,Xor; inline int Get(int x){
if(x<k) return 0;
if(x%k==0) return x/k;
int der=x/k+1,lef=x%k;
if(der>=lef) return Get(x-der);
else return Get(x-lef/der*der);
} int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d%d",&A,&k);
Xor^=Get(A);
} if(Xor) puts("Takahashi");
else puts("Aoki"); return 0;
}

AtCoder - 3939 Strange Nim的更多相关文章

  1. AtCoder练习

    1. 3721 Smuggling Marbles 大意: 给定$n+1$节点树, $0$为根节点, 初始在一些节点放一个石子, 然后按顺序进行如下操作. 若$0$节点有石子, 则移入盒子 所有石子移 ...

  2. 【AtCoder】ARC091

    C - Flip,Flip, and Flip...... 只有一个这一个是反面 只有一行那么除了两边以外都是反面 否则输出\((N - 2)*(M - 2)\) #include <bits/ ...

  3. sg函数小结

    sg函数小结 sg函数是处理博弈问题的重要工具. 我们知道sg(x)=mex{sg(j)|x能到达状态j} sg(x)=0时代表后手赢,否则先手赢. 对于一个问题,如果某些子问题是相互独立的,我们就可 ...

  4. Atcoder #017 agc017 D.Game on Tree 树上NIM 博弈

    LINK 题意:树上NIM的模板题,给出一颗树,现有操作删去端点不为根节点的边,其另一端节点都将被移除,不能取者为败 思路:一看就是个NIM博弈题,只是搬到树上进行,树上DFS进行异或 记得#014D ...

  5. Atcoder #014 agc014_D 树形DP+nim变形

    LINK 题意:两人在一颗树上做游戏,先手可以将树上一个节点染白,后手染黑,到最后时,所有与黑色相邻的白色同时变黑.如果还存在白色,先手胜,否则后手胜. 思路:首先不考虑树上,单独为链时,不管找规律也 ...

  6. LeetCode 292. Nim Game

    Problem: You are playing the following Nim Game with your friend: There to stones. The one who remov ...

  7. Atcoder Grand-014 Writeup

    A - Cookie Exchanges 题面 Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respec ...

  8. AtCoder Grand Contest 014

    AtCoder Grand Contest 014 A - Cookie Exchanges 有三个人,分别有\(A,B,C\)块饼干,每次每个人都会把自己的饼干分成相等的两份然后给其他两个人.当其中 ...

  9. AtCoder Beginner Contest 172 题解

    AtCoder Beginner Contest 172 题解 目录 AtCoder Beginner Contest 172 题解 A - Calc B - Minor Change C - Tsu ...

随机推荐

  1. 【BZOJ】1477 青蛙的约会

    [算法]扩展欧几里德算法(模线性方程) [题解]http://hzwer.com/2121.html 一些问题写在http://www.cnblogs.com/onioncyc/p/6146143.h ...

  2. How to write educational schema.

    Sometimes, writing such educational schemas could be of much use, and creating such docs can be bene ...

  3. Spring Data JPA 的使用(山东数漫江湖)

    pring data jpa介绍 什么是JPA JPA(Java Persistence API)是Sun官方提出的Java持久化规范.它为Java开发人员提供了一种对象/关联映射工具来管理Java应 ...

  4. 崩坏3mmd中的渲染技术研究

    http://youxiputao.com/articles/11839 主要是参考该篇文章做一个微小的复盘. 漫反射与高光 文章中的漫反射与高光并不是类似于普通的 resultCol = Diffu ...

  5. Watchcow(POJ2230+双向欧拉回路+打印路径)

    题目链接:http://poj.org/problem?id=2230 题目: 题意:给你m条路径,求一条路径使得从1出发最后回到1,并满足每条路径都恰好被沿着正反两个方向经过一次. 思路:由于可以回 ...

  6. js作用域与上下文

    作用域:与调用函数,访问变量的能力有关 作用域分为:局部和全局(在局部作用域里可以访问到全局作用域的变量,但在局部作用域外面就访问不到局部作用里面所设定的变量) 上下文:与this关键字有关 是调用当 ...

  7. Linux后台研发面试题

    本系列给出了在复习过程中一些C++后台相关面试题,回答内容按照笔者的知识点掌握,故有些问题回答较为简略 1.信号的生命周期 一个完整的信号生命周期可以用四个事件刻画:1)信号诞生:2)信号在进程中注册 ...

  8. python并发模块之concurrent.futures(一)

    Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类,实现了对threadin ...

  9. HighGUI图形图像界面初步——鼠标操作

    OpenCV中的鼠标操作和滑动条的消息映射方式很类似,都是通过一个中介函数配合一个回调函数来实现的,创建和指定滑动条回调函数为createTrackbar, 而指定鼠标操作消息回调函数的函数为setM ...

  10. Java将CST的时间字符串转换成需要的日期格式字符串

    已知得到的Date类型的变量meettingdate 的值为Sun Dec 16 10:56:34 CST :现在要将它改为yyyy-MM-dd类型或yyyy年MM月dd日: 变为yyyy年MM月dd ...