System IPC 与Posix IPC(msg消息对列)
系统消息队列:
- 系统V消息队列是随内核持续的,只有在内核重起或者显示删除一个消息队列时,该消息队列才会真正被删除。因此系统中记录消息队列的数据结构(struct ipc_ids msg_ids)位于内核中,系统中的所有消息队列都可以在结构msg_ids中找到访问入口。
- 消息队列就是一个消息的链表。每个消息队列都有一个队列头,用结构struct msg_queue来描述(参见 附录 2)。队列头中包含了该消息队列的大量信息,包括消息队列键值、用户ID、组ID、消息队列中消息数目等等,甚至记录了最近对消息队列读写进程的ID。读者可以访问这些信息,也可以设置其中的某些信息。
- 下图说明了内核与消息队列是怎样建立起联系的:
其中:struct ipc_ids msg_ids是内核中记录消息队列的全局数据结构;struct msg_queue是每个消息队列的队列头。
从上图可以看出,全局数据结构 struct ipc_ids msg_ids 可以访问到每个消息队列头的第一个成员:struct kern_ipc_perm;而每个struct kern_ipc_perm能够与具体的消息队列对应起来是因为在该结构中,有一个key_t类型成员key,而key则唯一确定一个消息队列。
struct kern_ipc_perm{ //内核中记录消息队列的全局数据结构msg_ids能够访问到该结构;
key_t key; //该键值则唯一对应一个消息队列
uid_t uid;
gid_t gid;
uid_t cuid;
gid_t cgid;
mode_t mode;
unsigned long seq;
}
1、 打开或创建消息队列
消息队列的内核持续性要求每个消息队列都在系统范围内对应唯一的键值,所以,要获得一个消息队列的描述字,只需提供该消息队列的键值即可;
注:消息队列描述字是由在系统范围内唯一的键值生成的,而键值可以看作对应系统内的一条路经。
2、 读写操作
消息读写操作非常简单,对开发人员来说,每个消息都类似如下的数据结构:
struct msgbuf{
long mtype;
char mtext[];
};
3、 获得或设置消息队列属性:
消息队列的信息基本上都保存在消息队列头中,因此,可以分配一个类似于消息队列头的结构(struct msqid_ds,见 附录 2),来返回消息队列的属性;同样可以设置该数据结构。
1、文件名到键值
#include <sys/types.h>
#include <sys/ipc.h>
key_t ftok (char*pathname, char proj);
key=ftok(path_ptr, 'a');
ipc_id=ipc(MSGGET, (int)key, flags,,NULL,);
…
2、linux为操作系统V进程间通信的三种方式(消息队列、信号灯、共享内存区)提供了一个统一的用户界面:
int ipc(unsigned int call, int first, int second, int third, void * ptr, long fifth);
第一个参数指明对IPC对象的操作方式,对消息队列而言共有四种操作:MSGSND、MSGRCV、MSGGET以及MSGCTL,分 别代表向消息队列发送消息、从消息队列读取消息、打开或创建消息队列、控制消息队列;first参数代表唯一的IPC对象;下面将介绍四种操作。
- int ipc( MSGGET, intfirst, intsecond, intthird, void*ptr, longfifth);
与该操作对应的系统V调用为:int msgget( (key_t)first,second)。 - int ipc( MSGCTL, intfirst, intsecond, intthird, void*ptr, longfifth)
与该操作对应的系统V调用为:int msgctl( first,second, (struct msqid_ds*) ptr)。 - int ipc( MSGSND, intfirst, intsecond, intthird, void*ptr, longfifth);
与该操作对应的系统V调用为:int msgsnd( first, (struct msgbuf*)ptr, second, third)。 - int ipc( MSGRCV, intfirst, intsecond, intthird, void*ptr, longfifth);
与该操作对应的系统V调用为:int msgrcv( first,(struct msgbuf*)ptr, second, fifth,third),
注:本人不主张采用系统调用ipc(),而更倾向于采用系统V或者POSIX进程间通信API。原因如下:
- 虽然该系统调用提供了统一的用户界面,但正是由于这个特性,它的参数几乎不能给出特定的实际意义(如以first、second来命名参数),在一定程度上造成开发不便。
- 正如ipc手册所说的:ipc()是linux所特有的,编写程序时应注意程序的移植性问题;
- 该系统调用的实现不过是把系统V IPC函数进行了封装,没有任何效率上的优势;
- 系统V在IPC方面的API数量不多,形式也较简洁。
系统V消息队列API共有四个,使用时需要包括几个头文件:
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
1)int msgget(key_t key, int msgflg)
参数key是一个键值,由ftok获得;msgflg参数是一些标志位。该调用返回与健值key相对应的消息队列描述字。
在以下两种情况下,该调用将创建一个新的消息队列:
- 如果没有消息队列与健值key相对应,并且msgflg中包含了IPC_CREAT标志位;
- key参数为IPC_PRIVATE;
参数msgflg可以为以下:IPC_CREAT、IPC_EXCL、IPC_NOWAIT或三者的或结果。
调用返回:成功返回消息队列描述字,否则返回-1。
注:参数key设置成常数IPC_PRIVATE并不意味着其他进程不能访问该消息队列,只意味着即将创建新的消息队列。
2)int msgrcv(int msqid, struct msgbuf *msgp, int msgsz, long msgtyp, int msgflg);
该系统调用从msgid代表的消息队列中读取一个消息,并把消息存储在msgp指向的msgbuf结构中。
msqid为消息队列描述字;消息返回后存储在msgp指向的地址,msgsz指定msgbuf的mtext成员的长度(即消息内容的长度),msgtyp为请求读取的消息类型;读消息标志msgflg可以为以下几个常值的或:
- IPC_NOWAIT 如果没有满足条件的消息,调用立即返回,此时,errno=ENOMSG
- IPC_EXCEPT 与msgtyp>0配合使用,返回队列中第一个类型不为msgtyp的消息
- IPC_NOERROR 如果队列中满足条件的消息内容大于所请求的msgsz字节,则把该消息截断,截断部分将丢失。
msgrcv手册中详细给出了消息类型取不同值时(>0; <0; =0),调用将返回消息队列中的哪个消息。
msgrcv()解除阻塞的条件有三个:
- 消息队列中有了满足条件的消息;
- msqid代表的消息队列被删除;
- 调用msgrcv()的进程被信号中断;
调用返回:成功返回读出消息的实际字节数,否则返回-1。
3)int msgsnd(int msqid, struct msgbuf *msgp, int msgsz, int msgflg);
向msgid代表的消息队列发送一个消息,即将发送的消息存储在msgp指向的msgbuf结构中,消息的大小由msgze指定。
对发送消息来说,有意义的msgflg标志为IPC_NOWAIT,指明在消息队列没有足够空间容纳要发送的消息时,msgsnd是否等待。造成msgsnd()等待的条件有两种:
- 当前消息的大小与当前消息队列中的字节数之和超过了消息队列的总容量;
- 当前消息队列的消息数(单位"个")不小于消息队列的总容量(单位"字节数"),此时,虽然消息队列中的消息数目很多,但基本上都只有一个字节。
msgsnd()解除阻塞的条件有三个:
- 不满足上述两个条件,即消息队列中有容纳该消息的空间;
- msqid代表的消息队列被删除;
- 调用msgsnd()的进程被信号中断;
调用返回:成功返回0,否则返回-1。
4)int msgctl(int msqid, int cmd, struct msqid_ds *buf);
该系统调用对由msqid标识的消息队列执行cmd操作,共有三种cmd操作:IPC_STAT、IPC_SET 、IPC_RMID。
- IPC_STAT:该命令用来获取消息队列信息,返回的信息存贮在buf指向的msqid结构中;
- IPC_SET:该命令用来设置消息队列的属性,要设置的属性存储在buf指向的msqid结构中;可设置属性包括:msg_perm.uid、msg_perm.gid、msg_perm.mode以及msg_qbytes,同时,也影响msg_ctime成员。
- IPC_RMID:删除msqid标识的消息队列;
调用返回:成功返回0,否则返回-1。
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <sys/msg.h>
#define MAX_TEXT 512
struct my_msg_st {
long int my_msg_type;
char some_text[MAX_TEXT];
};
int main()
{
int running = ;
struct my_msg_st some_data;
int msgid;
char buffer[BUFSIZ];
msgid = msgget((key_t), | IPC_CREAT);
if (msgid == -) {
fprintf(stderr, "msgget failed with error: %d\n", errno);
exit(EXIT_FAILURE);
}
while(running) {
printf("Enter some text: ");
fgets(buffer, BUFSIZ, stdin);
some_data.my_msg_type = ;
strcpy(some_data.some_text, buffer);
if (msgsnd(msgid, (void *)&some_data, MAX_TEXT, ) == -) {
fprintf(stderr, "msgsnd failed\n");
exit(EXIT_FAILURE);
}
if (strncmp(buffer, "end", ) == ) {
running = ;
}
}
exit(EXIT_SUCCESS); }
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/msg.h>
struct my_msg_st {
long int my_msg_type;
char some_text[BUFSIZ];
};
int main()
{
int running = ;
int msgid;
struct my_msg_st some_data;
long int msg_to_receive = ;
/* First, we set up the message queue. */
msgid = msgget((key_t), | IPC_CREAT);
if (msgid == -) {
fprintf(stderr, "msgget failed with error: %d\n", errno);
exit(EXIT_FAILURE);
}
/* Then the messages are retrieved from the queue, until an end message is encountered.
* Lastly, the message queue is deleted. */
while(running) {
if (msgrcv(msgid, (void *)&some_data, BUFSIZ,
msg_to_receive, MSG_EXCEPT) == -) {
fprintf(stderr, "msgrcv failed with error: %d\n", errno);
exit(EXIT_FAILURE);
}
printf("You wrote: %s", some_data.some_text);
if (strncmp(some_data.some_text, "end", ) == ) {
running = ;
}
}
#if 0
if (msgctl(msgid, IPC_RMID, ) == -) {
fprintf(stderr, "msgctl(IPC_RMID) failed\n");
exit(EXIT_FAILURE);
}
#endif
exit(EXIT_SUCCESS);
}
每个消息队列的容量(所能容纳的字节数)都有限制,该值因系统不同而不同。在后面的应用实例中,输出了redhat 8.0的限制,结果参见 附录 3。
另一个限制是每个消息队列所能容纳的最大消息数:在redhad 8.0中,该限制是受消息队列容量制约的:消息个数要小于消息队列的容量(字节数)。
注:上述两个限制是针对每个消息队列而言的,系统对消息队列的限制还有系统范围内的最大消息队列个数,以及整个系统范围内的最大消息数。一般来说,实际开发过程中不会超过这个限制。
消息队列与管道以及有名管道相比,具有更大的灵活性,首先,它提供有格式字节流,有利于减少开发人员的工作量;其次,消息具有类型,在 实际应用中,可作为优先级使用。这两点是管道以及有名管道所不能比的。同样,消息队列可以在几个进程间复用,而不管这几个进程是否具有亲缘关系,这一点与 有名管道很相似;但消息队列是随内核持续的,与有名管道(随进程持续)相比,生命力更强,应用空间更大。
附录 1: 在参考文献[1]中,给出了IPC随进程持续、随内核持续以及随文件系统持续的定义:
- 随进程持续:IPC一直存在到打开IPC对象的最后一个进程关闭该对象为止。如管道和有名管道;
- 随内核持续:IPC一直持续到内核重新自举或者显示删除该对象为止。如消息队列、信号灯以及共享内存等;
- 随文件系统持续:IPC一直持续到显示删除该对象为止。
结构msg_queue用来描述消息队列头,存在于系统空间:
struct msg_queue {
struct kern_ipc_perm q_perm;
time_t q_stime; /* last msgsnd time */
time_t q_rtime; /* last msgrcv time */
time_t q_ctime; /* last change time */
unsigned long q_cbytes; /* current number of bytes on queue */
unsigned long q_qnum; /* number of messages in queue */
unsigned long q_qbytes; /* max number of bytes on queue */
pid_t q_lspid; /* pid of last msgsnd */
pid_t q_lrpid; /* last receive pid */
struct list_head q_messages;
struct list_head q_receivers;
struct list_head q_senders;
};
struct msqid_ds {
struct ipc_perm msg_perm;
struct msg *msg_first; /* first message on queue,unused */
struct msg *msg_last; /* last message in queue,unused */
__kernel_time_t msg_stime; /* last msgsnd time */
__kernel_time_t msg_rtime; /* last msgrcv time */
__kernel_time_t msg_ctime; /* last change time */
unsigned long msg_lcbytes; /* Reuse junk fields for 32 bit */
unsigned long msg_lqbytes; /* ditto */
unsigned short msg_cbytes; /* current number of bytes on queue */
unsigned short msg_qnum; /* number of messages in queue */
unsigned short msg_qbytes; /* max number of bytes on queue */
__kernel_ipc_pid_t msg_lspid; /* pid of last msgsnd */
__kernel_ipc_pid_t msg_lrpid; /* last receive pid */
};
System IPC 与Posix IPC(msg消息对列)的更多相关文章
- System IPC 与Posix IPC(semaphore信号灯)
POSIX下IPC主要包括三种: posix message queue posix semaphores posix shared memory sysytem v IPC包括: system v ...
- System IPC 与Posix IPC(共享内存)
系统v(共享内存) 1.对于系统V共享内存,主要有以下几个API:shmget().shmat().shmdt()及shmctl(). 2.shmget()用来获得共享内存区域的ID,如果不存在指定的 ...
- IPC通信:Posix消息队列
IPC通信:Posix消息队列 消息队列可以认为是一个链表.进程(线程)可以往里写消息,也可以从里面取出消息.一个进程可以往某个消息队列里写消息,然后终止,另一个进程随时可以从消息队列里取走这些消息. ...
- System v和posix的IPC对比
之前有一篇关于共享内存的System V和Posix的对比: http://www.cnblogs.com/charlesblc/p/6261469.html POSIX(Portable Opera ...
- 第二章:Posix IPC
2.1:概述 以下三种类型的IPC合称为“Posix IPC”: Posix消息队列 Posix信号量 Posix共享内存区 Posix IPC在访问它们的函数和描述它们的信息上有一些类似点.本章讲述 ...
- 第2章 Posix IPC
2.1 概述 Poxix IPC包含:Posix消息队列.Posix信号量.Posix共享内存 2.2 IPC名字 Posix 消息队列.Posix信号量.Posix共享内存这三种Posix IPC都 ...
- 《Unix网络编程》卷2 读书笔记 第2章- Posix IPC
1. 概述 Posix IPC 包括:Posix消息队列.Posix信号量.Posix共享内存区 Posix IPC在访问它们的函数和描述它们的信息上有一些类似点. 本章讲述所有这些共同属性:用于标识 ...
- system v和posix的共享内存对比 & 共享内存位置
参考 http://www.startos.com/linux/tips/2011012822078.html 1)Linux和所有的UNIX操作系统都允许通过共享内存在应用程序之间共享存储空间. 2 ...
- System V 与 POSIX 简介与对比
当我们在 Linux 系统中进行进程间通信时,例如信号量,消息队列,共享内存等方式,会发现有System V以及POSIX两种类型.今天我们就来简单介绍下它们. POSIX: POSIX(Portab ...
随机推荐
- HTML5跨域请求--POST方式
var xmlHttp; // Create the XHR object. function createCORSRequest(method, url) { var xhr = new XMLHt ...
- web项目 log4j2 指定配置文件路径
pom.xml需要额外引入的jar: <dependency> <groupId>org.apache.logging.log4j</groupId> <ar ...
- 1.8 js基础(常用方法小结)
1.获取随机数 var rdm=function(n,m){ return parseInt(n+Math.random()*(m-n)); } 2.位数不够补0 function toDou(inu ...
- input输入提示历史记录
一般便于用户的输入习惯,我们都会提示历史消息,让用户有更好的使用体验,以前可能比较多朋友会用js来实现,现在HTML5的datalist可以轻松帮我们实现这个功能!只需以下几行代码 <!doct ...
- WINDOWS安装mysql5.7.20
MSI安装包链接 http://pan.baidu.com/s/1mhI0SMO 提取密码 gaqu 安装前要把老版本的MYSQL卸载干净 之前用官网的archive免安装版安装一直失败,放弃,用MS ...
- Codeforces 543E. Listening to Music
Description 题面 Solution 分块套分块,分别对时间和位置进行分块 差不多是一个定期保存信息的方法 对于询问我们不妨求出 \(>=x\) 的答案,然后用 \(m-(>=x ...
- CommandLineRunner预加载数据
在使用SpringBoot构建项目时,我们通常有一些预先数据的加载.那么SpringBoot提供了一个简单的方式来实现–CommandLineRunner. CommandLineRunner是一个接 ...
- easypoi导出单个sheet和多个sheet
今天有时间研究了一下easypoi,感觉使用了easypoi导出excel方便了很多,不用写很多复杂的反射,只需要使用注解和一些工具类就可以实现常用的excel的导出,接下来介绍一下easypoi如何 ...
- log4j的简单使用
引入jar包org.apache.log4j.Logger,项目src目录下建立一个log4j.properties配置文件 log4j.rootLogger=INFO,A1,R log4j.appe ...
- 自定义控件实现-今日头条Android APP图集效果
前提 产品有个新需求,类似今日头条的图集效果 大致看了下UI,大致就是ViewPager,横向滑动切换图片,纵向滑动移动图片,纵向超过一定距离,图片飞出,图集淡出动画退出,支持图片的双击放大. 思路 ...