个人感觉挺有意思的,然而被颜神D无聊惹(~ ̄▽ ̄)~

  这题我们可以首先试图去统计以每一个点作为 w 点所能对答案造成的贡献是多少。不难发现,当且仅当 u 和 v 都在 w 所在边双的一侧的时候不能构成一个合法的三元组,因为它们要到达 w 均需经过一条共同的割边。那么因为原图是一棵树,所以我们连接两个点的时候就是在把这两个点所在的边双一直到根所在的边双都合并为一个。

  考虑如何在合并答案的时候计算出答案的变化。若我们合并的是 S,T 这两个集合,我们可以先减去由 S 和 T 中的点作为 w 点时对答案造成的贡献。1.u 和 v 均为 w 所在边双中的点,这个直接用边双大小统计就可以了;2.一个在边双外部,一个在边双内部。这个也可以直接用边双大小进行统计。

  比较难想到的是如何统计两个点都在边双外部的情况(在边双的两侧)。这个直接统计并不是很方便,但是不难发现如果统计在点双外部且在两侧的情况是很多的,而在点双外部且在同一侧的情况则单一很多。全部的选择就是点双外部的点钟随便选两个,我们可以把在同一侧的情况减去得到合法的解。维护数组 w[u] 表示 u 联通块中的一个点所能匹配到的同一侧的两个点有多少种方案。非法的情况即为 w[u] * s[u] (u 联通块的大小)。合并的时候 w 数组怎么合并呢?令 u 为 v 的父亲,则 w[u] + w[v] 这样统计的话会把 v 所在的子树内的点对 & v 点外部(父亲子树)的点对统计两次。减去就好啦。

#include <bits/stdc++.h>
using namespace std;
#define maxn 1000000
#define int long long
int n, ans, s[maxn], w[maxn], dep[maxn];
int size[maxn], fa[maxn], f[maxn]; int read()
{
int x = , k = ;
char c; c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} struct edge
{
int cnp, to[maxn], last[maxn], head[maxn];
edge() { cnp = ; }
void add(int u, int v)
{
to[cnp] = v, last[cnp] = head[u], head[u] = cnp ++;
to[cnp] = u, last[cnp] = head[v], head[v] = cnp ++;
}
}E1; void dfs(int u)
{
size[u] = ; dep[u] = dep[fa[u]] + ;
for(int i = E1.head[u]; i; i = E1.last[i])
{
int v = E1.to[i];
if(v == fa[u]) continue;
fa[v] = u; dfs(v);
size[u] += size[v]; w[u] += size[v] * size[v];
}
w[u] += (n - size[u]) * (n - size[u]);
ans -= w[u];
} int Cal(int u) { return max(s[u] * (s[u] - ) * (s[u] - ), 0LL); }
int find(int x) { return f[x] == x ? x : f[x] = find(f[x]); }
void merge(int u, int v)
{
ans -= (n - s[u]) * (n - s[u]) * s[u] - w[u] * s[u];
ans -= (n - s[v]) * (n - s[v]) * s[v] - w[v] * s[v];
ans -= (n - s[u]) * s[u] * (s[u] - ) * ;
ans -= (n - s[v]) * s[v] * (s[v] - ) * ;
ans -= Cal(u) + Cal(v); f[v] = u, s[u] += s[v]; w[u] += w[v] - size[v] * size[v] - (n - size[v]) * (n - size[v]);
ans += (n - s[u]) * (n - s[u]) * s[u] - w[u] * s[u] + Cal(u);
ans += (n - s[u]) * s[u] * (s[u] - ) * ;
} signed main()
{
n = read();
for(int i = ; i < n; i ++)
{
int u = read(), v = read();
E1.add(u, v);
}
ans = n * (n - ) * (n - ); dfs();
for(int i = ; i <= n; i ++) f[i] = i, s[i] = ;
int q = read();
printf("%lld\n", ans);
for(int i = ; i <= q; i ++)
{
int u = read(), v = read();
u = find(u), v = find(v);
while(u != v)
{
if(dep[u] < dep[v]) swap(u, v);
int fu = find(fa[u]);
merge(fu, u); u = fu;
}
printf("%lld\n", ans);
}
return ;
}

【题解】CF#855 G-Harry Vs Voldemort的更多相关文章

  1. [题解向] CF#Global Round 1の题解(A $\to$ G)

    这里是总链接\(Link\). \(A\) 题意:求\(\sum_{i=1}^{k} a_i\times b^{k-i}\)的奇偶性, \(k = \Theta(n \log n)\) --其实很容易 ...

  2. 竞赛题解 - CF Round #524 Div.2

    CF Round #524 Div.2 - 竞赛题解 不容易CF有一场下午的比赛,开心的和一个神犇一起报了名 被虐爆--前两题水过去,第三题卡了好久,第四题毫无头绪QwQ Codeforces 传送门 ...

  3. 题解 CF 1372 B

    题目 传送门 题意 给出 \(n\),输出 \(a\) ,\(b\) (\(0 < a \leq b < n\)),使\(a+b=n\)且 \(\operatorname{lcm}(a,b ...

  4. 题解——CF Manthan, Codefest 18 (rated, Div. 1 + Div. 2) T5(思维)

    还是dfs? 好像自己写的有锅 过不去 看了题解修改了才过qwq #include <cstdio> #include <algorithm> #include <cst ...

  5. CF 1051 G. Distinctification

    G. Distinctification 链接 分析: 线段树合并 + 并查集. 最后操作完后a连续递增的一段,b一定是递减的.最后的答案是$\sum (a_{new}-a_{odd}) \times ...

  6. CF 724 G. Xor-matic Number of the Graph

    G. Xor-matic Number of the Graph 链接 题意: 给定一个无向图,一个interesting的三元环(u,v,s)满足,从u到v的路径上的异或和等于s,三元环的权值为s, ...

  7. CF 1093 G. Multidimensional Queries

    G. Multidimensional Queries 链接 分析: 考虑如何去掉绝对值符号. $\sum \limits_{i = 1}^{k} |a_{x, i} - a_{y, i}|$,由于k ...

  8. 【codeforces】【比赛题解】#855 Codefest 17

    神秘比赛,以<哈利波特>为主题……有点难. C题我熬夜切终于是写出来了,可惜比赛结束了,气啊. 比赛链接:点我. [A]汤姆·里德尔的日记 题意: 哈利波特正在摧毁神秘人的分灵体(魂器). ...

  9. 竞赛题解 - [CF 1080D]Olya and magical square

    Olya and magical square - 竞赛题解 借鉴了一下神犇tly的博客QwQ(还是打一下广告) 终于弄懂了 Codeforces 传送门 『题目』(直接上翻译了) 给一个边长为 \( ...

随机推荐

  1. 无偏方差为什么除以n-1

    设样本均值为,样本方差为,总体均值为,总体方差为,那么样本方差有如下公式:. 很多人可能都会有疑问,为什么要除以n-1,而不是n,但是翻阅资料,发现很多都是交代到,如果除以n,对样本方差的估计不是无偏 ...

  2. Java:二进制(原码、反码、补码)与位运算

    一.二进制(原码.反码.补码) 二进制的最高位是符号位(“0”代表正数,“1”代表负数): Java中没有无符号数: 计算机以整数的补码进行运算: 1.  原码:将一个整数转换成二进制表示 以 int ...

  3. css 网站常用

    简单的loading效果 .progressBar { border: solid 1px #303031; font: bold 20px/22px Arial, sans-serif; backg ...

  4. WEB安全基础之sql注入基础

    1.基础sql语句 注释 单行注释# %23--+ --加空格多行注释/**/ SELECT(VERSION()) SELECT(USER()) SELECT(database()) 查数据库 SEL ...

  5. RabbitMQ基础教程之Spring&JavaConfig使用篇

    RabbitMQ基础教程之Spring使用篇 相关博文,推荐查看: RabbitMq基础教程之安装与测试 RabbitMq基础教程之基本概念 RabbitMQ基础教程之基本使用篇 RabbitMQ基础 ...

  6. idea前端页面不刷新----springboot

    修改这里就好了

  7. PAT - L2-001. 紧急救援( Dijstra )

    - PAT - L2-001. 紧急救援 题目链接 作为一个城市的应急救援队伍的负责人,你有一张特殊的全国地图.在地图上显示有多个分散的城市和一些连接城市的快速道路.每个城市的救援队数量和每一条连接两 ...

  8. Java集合学习--集合总结

    一.ArrayList与Vector ArrayList与Vector很多地方大同小异,Vector现在已经基本不再使用.具体的管理如下:1.ArrayList与Vector都实现了List接口,底层 ...

  9. HADOOP-输出数据实体类承载

    新建一个bean包: 1.实现Writerable 2.有一个空的构造方法 代码实现: import java.io.DataInput; import java.io.DataOutput; imp ...

  10. 查看python中包的文档

    核心命令:python -m pydoc 查询某包:python -m pydoc 包名 示例: C:\Users\xxx>python -m pydoc pydoc - the Python ...