个人感觉挺有意思的,然而被颜神D无聊惹(~ ̄▽ ̄)~

  这题我们可以首先试图去统计以每一个点作为 w 点所能对答案造成的贡献是多少。不难发现,当且仅当 u 和 v 都在 w 所在边双的一侧的时候不能构成一个合法的三元组,因为它们要到达 w 均需经过一条共同的割边。那么因为原图是一棵树,所以我们连接两个点的时候就是在把这两个点所在的边双一直到根所在的边双都合并为一个。

  考虑如何在合并答案的时候计算出答案的变化。若我们合并的是 S,T 这两个集合,我们可以先减去由 S 和 T 中的点作为 w 点时对答案造成的贡献。1.u 和 v 均为 w 所在边双中的点,这个直接用边双大小统计就可以了;2.一个在边双外部,一个在边双内部。这个也可以直接用边双大小进行统计。

  比较难想到的是如何统计两个点都在边双外部的情况(在边双的两侧)。这个直接统计并不是很方便,但是不难发现如果统计在点双外部且在两侧的情况是很多的,而在点双外部且在同一侧的情况则单一很多。全部的选择就是点双外部的点钟随便选两个,我们可以把在同一侧的情况减去得到合法的解。维护数组 w[u] 表示 u 联通块中的一个点所能匹配到的同一侧的两个点有多少种方案。非法的情况即为 w[u] * s[u] (u 联通块的大小)。合并的时候 w 数组怎么合并呢?令 u 为 v 的父亲,则 w[u] + w[v] 这样统计的话会把 v 所在的子树内的点对 & v 点外部(父亲子树)的点对统计两次。减去就好啦。

#include <bits/stdc++.h>
using namespace std;
#define maxn 1000000
#define int long long
int n, ans, s[maxn], w[maxn], dep[maxn];
int size[maxn], fa[maxn], f[maxn]; int read()
{
int x = , k = ;
char c; c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} struct edge
{
int cnp, to[maxn], last[maxn], head[maxn];
edge() { cnp = ; }
void add(int u, int v)
{
to[cnp] = v, last[cnp] = head[u], head[u] = cnp ++;
to[cnp] = u, last[cnp] = head[v], head[v] = cnp ++;
}
}E1; void dfs(int u)
{
size[u] = ; dep[u] = dep[fa[u]] + ;
for(int i = E1.head[u]; i; i = E1.last[i])
{
int v = E1.to[i];
if(v == fa[u]) continue;
fa[v] = u; dfs(v);
size[u] += size[v]; w[u] += size[v] * size[v];
}
w[u] += (n - size[u]) * (n - size[u]);
ans -= w[u];
} int Cal(int u) { return max(s[u] * (s[u] - ) * (s[u] - ), 0LL); }
int find(int x) { return f[x] == x ? x : f[x] = find(f[x]); }
void merge(int u, int v)
{
ans -= (n - s[u]) * (n - s[u]) * s[u] - w[u] * s[u];
ans -= (n - s[v]) * (n - s[v]) * s[v] - w[v] * s[v];
ans -= (n - s[u]) * s[u] * (s[u] - ) * ;
ans -= (n - s[v]) * s[v] * (s[v] - ) * ;
ans -= Cal(u) + Cal(v); f[v] = u, s[u] += s[v]; w[u] += w[v] - size[v] * size[v] - (n - size[v]) * (n - size[v]);
ans += (n - s[u]) * (n - s[u]) * s[u] - w[u] * s[u] + Cal(u);
ans += (n - s[u]) * s[u] * (s[u] - ) * ;
} signed main()
{
n = read();
for(int i = ; i < n; i ++)
{
int u = read(), v = read();
E1.add(u, v);
}
ans = n * (n - ) * (n - ); dfs();
for(int i = ; i <= n; i ++) f[i] = i, s[i] = ;
int q = read();
printf("%lld\n", ans);
for(int i = ; i <= q; i ++)
{
int u = read(), v = read();
u = find(u), v = find(v);
while(u != v)
{
if(dep[u] < dep[v]) swap(u, v);
int fu = find(fa[u]);
merge(fu, u); u = fu;
}
printf("%lld\n", ans);
}
return ;
}

【题解】CF#855 G-Harry Vs Voldemort的更多相关文章

  1. [题解向] CF#Global Round 1の题解(A $\to$ G)

    这里是总链接\(Link\). \(A\) 题意:求\(\sum_{i=1}^{k} a_i\times b^{k-i}\)的奇偶性, \(k = \Theta(n \log n)\) --其实很容易 ...

  2. 竞赛题解 - CF Round #524 Div.2

    CF Round #524 Div.2 - 竞赛题解 不容易CF有一场下午的比赛,开心的和一个神犇一起报了名 被虐爆--前两题水过去,第三题卡了好久,第四题毫无头绪QwQ Codeforces 传送门 ...

  3. 题解 CF 1372 B

    题目 传送门 题意 给出 \(n\),输出 \(a\) ,\(b\) (\(0 < a \leq b < n\)),使\(a+b=n\)且 \(\operatorname{lcm}(a,b ...

  4. 题解——CF Manthan, Codefest 18 (rated, Div. 1 + Div. 2) T5(思维)

    还是dfs? 好像自己写的有锅 过不去 看了题解修改了才过qwq #include <cstdio> #include <algorithm> #include <cst ...

  5. CF 1051 G. Distinctification

    G. Distinctification 链接 分析: 线段树合并 + 并查集. 最后操作完后a连续递增的一段,b一定是递减的.最后的答案是$\sum (a_{new}-a_{odd}) \times ...

  6. CF 724 G. Xor-matic Number of the Graph

    G. Xor-matic Number of the Graph 链接 题意: 给定一个无向图,一个interesting的三元环(u,v,s)满足,从u到v的路径上的异或和等于s,三元环的权值为s, ...

  7. CF 1093 G. Multidimensional Queries

    G. Multidimensional Queries 链接 分析: 考虑如何去掉绝对值符号. $\sum \limits_{i = 1}^{k} |a_{x, i} - a_{y, i}|$,由于k ...

  8. 【codeforces】【比赛题解】#855 Codefest 17

    神秘比赛,以<哈利波特>为主题……有点难. C题我熬夜切终于是写出来了,可惜比赛结束了,气啊. 比赛链接:点我. [A]汤姆·里德尔的日记 题意: 哈利波特正在摧毁神秘人的分灵体(魂器). ...

  9. 竞赛题解 - [CF 1080D]Olya and magical square

    Olya and magical square - 竞赛题解 借鉴了一下神犇tly的博客QwQ(还是打一下广告) 终于弄懂了 Codeforces 传送门 『题目』(直接上翻译了) 给一个边长为 \( ...

随机推荐

  1. Python:numpy中的tile函数

    在学习机器学习实教程时,实现KNN算法的代码中用到了numpy的tile函数,因此对该函数进行了一番学习: tile函数位于python模块 numpy.lib.shape_base中,他的功能是重复 ...

  2. ROS Twist和Odometry消息类型使用(Python)

    消息类型: 1. Twist - 线速度角速度 通常被用于发送到/cmd_vel话题,被base controller节点监听,控制机器人运动 geometry_msgs/Twist geometry ...

  3. 利用反射获取Model值

    public ActionResult Base(UserModel Model) { Model.Tel = string.Format("{0}-{1}", Model.Are ...

  4. HardcodedDebugMode

    xmlns:tools="http://schemas.android.com/tools" tools:ignore="HardcodedDebugMode"

  5. OSG-基本几何图形

    本文转至http://www.cnblogs.com/shapherd/archive/2010/08/10/osg.html 作者写的比较好,再次收藏,希望更多的人可以看到这个文章 互联网是是一个相 ...

  6. Objective-C Block数据类型 @protocol关键字

    Block数据类型 Block封装了一段代码 可以在任何时候执行 Block可以作为函数参数或者函数的返回值 而其本身又可以带输入参数或返回值 苹果官方建议尽量多用Block 在多线程 异步任务 集合 ...

  7. Java 集合学习--HashMap

    一.HashMap 定义 HashMap 是一个基于散列表(哈希表)实现的键值对集合,每个元素都是key-value对,jdk1.8后,底层数据结构涉及到了数组.链表以及红黑树.目的进一步的优化Has ...

  8. leetcode-回文链表

    请判断一个链表是否为回文链表. 示例 1: 输入: 1->2 输出: false 示例 2: 输入: 1->2->2->1 输出: true 进阶:你能否用 O(n) 时间复杂 ...

  9. 【20180807模拟测试】tree

    题目描述 或许会传送失败的传送门 #分析 考虑如何才能让白边显得更(不)重要,即在每条白边上(加上)减去一个值. 我们可以二分这个值,然后用寻常方法做最小生成树.统计在此最小生成树里有多少白 边. 然 ...

  10. java对json文件的操作

    第一步:通过FileReader读取json文件第二步:使用BufferReader,先通过I/O读取一定大小的数据缓存到数组中,然后再从数组取出数据.第三步:用一个字符串把每次传来的数据处理后写到新 ...