HDOJ:6333-Problem B. Harvest of Apples(组合数学+莫队算法+逆元)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6333
解题心得:
- 这个题可以说是十分精彩了,首先推组合数学的公式,其中一个很重要的公式是Cnm = Cmn-1 + Cm-1n-1 这个公式知道杨辉三角的都明白,但是一看发现似乎没啥用。但是可以以这个公式为基础继续推演下去。
- 设Snm = Cn1 + Cn2 + Cn3 + ...... Cnm 然后继续使用上面的基本公式可以化成
- Sn m-1 = Sn m - Cn m
Sn m+1 = Sn m + Cn m+1
Sn+1 m = 2Sn m - Cn m
Sn m = (Sn+1 m + Cn m)/2 - 这些个公式看起来没啥用,但是知道S的关系之间可以通过O(1)的复杂度来进行转化,这样就可以将105次询问离线化处理,也就是用莫队来维护。神奇阿,想破脑袋就是想不到阿。里面的除法取余的操作用逆元来处理,逆元可以先全与预处理出来。
//
// ┏┛ ┻━━━━━┛ ┻┓
// ┃ ┃
// ┃ ━ ┃
// ┃ ┳┛ ┗┳ ┃
// ┃ ┃
// ┃ ┻ ┃
// ┃ ┃
// ┗━┓ ┏━━━┛
// ┃ ┃ 神兽保佑
// ┃ ┃ 代码无BUG!
// ┃ ┗━━━━━━━━━┓
// ┃ ┣┓
// ┃ ┏┛
// ┗━┓ ┓ ┏━━━┳ ┓ ┏━┛
// ┃ ┫ ┫ ┃ ┫ ┫
// ┗━┻━┛ ┗━┻━┛
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5+;
const int MOD = 1e9+;
typedef long long ll; struct Query {
ll n, m, B, pos, ans;
}q[maxn]; ll unit, ans, fac[maxn], inv[maxn], t, rev2; ll quick_pow(ll a, ll b) {
ll res = ;
while(b) {
if(b&)
res = res * a % MOD;
a = a * a % MOD;
b >>= ;
}
return res;
} void get_fac() { //预处理出阶乘和逆元
fac[] = ;
fac[] =;
for(int i=;i<maxn;i++) {
fac[i] = i * fac[i-] % MOD;
} //神奇的操作
inv[maxn-] = quick_pow(fac[maxn-], MOD-);
for(int i=maxn-;i>=;i--) {
inv[i] = inv[i+] * (i + ) % MOD;
}
} bool cmp1(Query a, Query b) {
if(a.B == b.B)
return a.m < b.m;
return a.B < b.B;
} bool cmp2(Query a, Query b) {
return a.pos < b.pos;
} void init() {
unit = sqrt(maxn);
get_fac();
scanf("%lld", &t);
for(int i=;i<t;i++) {
scanf("%lld%lld", &q[i].n, &q[i].m);
q[i].B = q[i].n/unit;
q[i].pos = i;
}
rev2 = quick_pow(, MOD-);
sort(q, q+t, cmp1);
} ll C(ll n, ll m) {//得到c(n, m)的组合
ll ans = fac[n] * inv[n-m] % MOD * inv[m] % MOD;
return ans;
} void addL(ll l, ll r) {
ans = (( * ans % MOD) + MOD - C(l, r)) % MOD;
} void cutL(ll l, ll r) {
ans = (ans + C(l-, r) % MOD) * rev2 % MOD;
} void addR(ll l, ll r) {
ans = (ans + C(l, r+)) % MOD;
} void cutR(ll l, ll r) {
ans = (ans + MOD - C(l, r)) % MOD;
} int main() {
init();
ll l=, r = ;
ans = ;
for(int i=;i<t;i++) {//离线莫队处理
int L = q[i].n;
int R = q[i].m;
while(l < L) addL(l++, r);
while(l > L) cutL(l--, r);
while(r > R) cutR(l, r--);
while(r < R) addR(l, r++); q[i].ans = ans;
}
sort(q, q+t, cmp2);
for(int i=;i<t;i++) {
printf("%lld\n",q[i].ans);
}
return ;
}
HDOJ:6333-Problem B. Harvest of Apples(组合数学+莫队算法+逆元)的更多相关文章
- HDU - 6333 Problem B. Harvest of Apples (莫队)
There are nn apples on a tree, numbered from 11 to nn. Count the number of ways to pick at most mm a ...
- 2018 Multi-University Training Contest 4 Problem B. Harvest of Apples 【莫队+排列组合+逆元预处理技巧】
任意门:http://acm.hdu.edu.cn/showproblem.php?pid=6333 Problem B. Harvest of Apples Time Limit: 4000/200 ...
- hdu多校第4场 B Harvest of Apples(莫队)
Problem B. Harvest of Apples Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Su ...
- HDU - 6333 Problem B. Harvest of Apples (莫队+组合数学)
题意:计算C(n,0)到C(n,m)的和,T(T<=1e5)组数据. 分析:预处理出阶乘和其逆元.但如果每次O(m)累加,那么会超时. 定义 S(n, m) = sigma(C(n,m)).有公 ...
- 【HDOJ6333】Harvest of Apples(莫队)
题意: 给定T组询问,每组有两个数字n和m,求sigma i=0..m c(n,i) 答案对1e9+7取模 T<=1e5 1<=n,m<=1e5 思路: 注意要先变n再变m,否则会因 ...
- HDU 6333.Problem B. Harvest of Apples-组合数C(n,0)到C(n,m)求和-组合数学(逆元)+莫队 ((2018 Multi-University Training Contest 4 1002))
2018 Multi-University Training Contest 4 6333.Problem B. Harvest of Apples 题意很好懂,就是组合数求和. 官方题解: 我来叨叨 ...
- hdu6333 Problem B. Harvest of Apples(组合数+莫队)
hdu6333 Problem B. Harvest of Apples 题目传送门 题意: 求(0,n)~(m,n)组合数之和 题解: C(n,m)=C(n-1,m-1)+C(n-1,m) 设 ...
- 【魔改】莫队算法+组合数公式 杭电多校赛4 Problem B. Harvest of Apples
http://acm.hdu.edu.cn/showproblem.php?pid=6333 莫队算法是一个离线区间分块瞎搞算法,只要满足:1.离线 2.可以O(1)从区间(L,R)更新到(L±1, ...
- BZOJ 3339: Rmq Problem 莫队算法
3339: Rmq Problem 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3339 Description n个数,m次询问l,r ...
随机推荐
- Http协议和web本职【转自丁码农】
当你在浏览器地址栏敲入“http://www.cnblogs.com/”,然后猛按回车,呈现在你面前的,将是博客园的首页了(这真是废话,你会认为这是理所当然的).作为一个开发者,尤其是web开发人员, ...
- IE 浏览器中英文切换
Oracle相关产品浏览器中可以调节显示中英文
- 自动备份软件 —— Syncovery 7.98s Pro/Enterprise
SynCovery自动备份软件原名Super Flexible Synchronizer,是目前功能最为强大的实时自动备份工具,连FTP.WebDAV等全部支持!最近从V6开始改用比较好记.易懂的新名 ...
- PhoneGap Geolocation 获取地理位置 api
一. PhoneGap Geolocation 对象介绍 1.使应用程序可以访问地理位置信息.geolocation 对象提供了对设备 GPS 传感器的访问.Geolocation 提供设备的位置信息 ...
- Eclipse_java项目中导入外部jar文件
非常多时候,在java项目中须要导入外部 .jar文件.比方:须要导入数据库连接驱动等等一些包.不熟悉eclipse的人可能会犯愁,事实上非常easy. ...过程例如以下: 在须要加入外部文件的项 ...
- C#POST 支付宝/微信回调接口
一般支付宝/微信的回调接口都会返回xml格式,下面是调用类似这种接口的办法: public async Task<string> GetData() { string requestUrl ...
- @RestController失效
@RestController 注解失效.就是本来应该是直接返回数据.而不是去查找视图.但是去查找视图了.我这人不喜欢弄一些无用的配置文件.所以用到什么.引用什么.但是也容易犯错误.不过也好.对哪里出 ...
- 多python版本下,使用pip安装第三方库
说明:win10系统,先安装有Python3.5.2,后又安装了Python2.7.13(并重命名了Python27文件夹下python.exe为python2.7.13.exe),试图使用pip安装 ...
- django, CentOS7+nginx(apache)+mod_wsgi+Python+Django
Django是一个开放源代码的Web应用框架,由Python写成.采用了MVC的框架模式,即模型M,视图V和控制器C.它最初是被开发来用于管理劳伦斯出版集团旗下的一些以新闻内容为主的网站的,即是CMS ...
- 微信小程序新版用户授权方式处理
最新更新(2018-12-27): 最近做了改版,做成默认进来就是首页,然后去判断有没有用户信息,没有的话再去判断用没授权过,如果授权过直接自动去获取,没有的话再跳转到授权页面.因为用户授权主要就是针 ...