开头

这是每周比赛中的第一道题,博主试了好几次坑后才勉强做对了,第二道题写的差不多结果去试时结果比赛已经已经结束了(尴尬),所以今天只记录第一道题吧

题目原文

  1. Magic Squares In Grid

A 3 x 3 magic square is a 3 x 3 grid filled with distinct numbers from 1 to 9 such that each row, column, and both diagonals all have the same sum.

Given an N x N grid of integers, how many 3 x 3 "magic square" subgrids are there? (Each subgrid is contiguous).

Example 1:

Input: [[4,3,8,4],
        [9,5,1,9],
        [2,7,6,2]]
Output: 1
Explanation:
The following subgrid is a 3 x 3 magic square:
438
951
276

while this one is not:
384
519
762

In total, there is only one magic square inside the given grid.

Note:

1 <= grid.length = grid[0].length <= 10
0 <= grid[i][j] <= 15

简单翻译一下

先给出幻方的定义:3×3的矩阵,矩阵中元素由1-9组成,并且每一行、每一列、俩条对角线三个元素之和相等
(ps,我刚开始没看清楚幻方的定义,吃了一些亏)
给定一个N*M的矩阵,其中有多少个三阶幻方?

例子
输入矩阵:[   [4,3,8,4],
            [9,5,1,9],
            [2,7,6,2] ]
输出结果:1
解释
矩阵    [   [4,3,8],
            [9,5,1],
            [2,7,6] ]
是一个三阶幻方

而另一个矩阵:[    [3,8,4],
                 [5,1,9],
                 [7,6,2] ]
不是三阶幻方

备注:

  1. 给定矩阵的维度M×N中,1<=M,N<10
  2. 矩阵中每个元素的值, 0<=a[m][n]<=15

    解答

class Solution {
public:
    int numMagicSquaresInside(vector<vector<int>>& grid) {
        int flag=0;
        vector<int> v{1,2,3,4,5,6,7,8,9};
        if(grid.size()<2||(*grid.begin()).size()<2)
            return flag;
        for(int i=0;i<grid.size()-2;++i){
            for(int j=0;j<(*grid.begin()).size()-2;++j){
                int sum=15;
                if( (grid[i+1][j+1]==5)                              &&
                    (grid[i][j]>=1)&&(grid[i][j]<=9)                 &&
                    (grid[i+1][j]>=1)&&(grid[i+1][j]<=9)             &&
                    (grid[i+2][j]>=1)&&(grid[i+2][j]<=9)              &&
                    (grid[i][j+1]>=1)&&(grid[i][j+1]<=9)              &&
                    (grid[i+2][j+1]>=1)&&(grid[i+2][j+1]<=9)          &&
                    (grid[i][j+2]>=1)&&(grid[i][j+2]<=9)              &&
                    (grid[i+1][j+2]>=1)&&(grid[i][j+2]<=9)            &&
                    (grid[i+2][j+2]>=1)&&(grid[i][j+2]<=9)            &&
                    (grid[i][j]+grid[i][j+1]+grid[i][j+2]==sum)      &&
                    (grid[i+1][j]+grid[i+1][j+1]+grid[i+1][j+2]==sum)  &&
                    (grid[i+2][j]+grid[i+2][j+1]+grid[i+2][j+2]==sum)  &&
                    (grid[i][j]+grid[i+1][j]+grid[i+2][j]==sum)        &&
                    (grid[i][j+1]+grid[i+1][j+1]+grid[i+2][j+1]==sum)  &&
                    (grid[i][j+2]+grid[i+1][j+2]+grid[i+2][j+2]==sum)  &&
                    (grid[i][j]+grid[i+1][j+1]+grid[i+2][j+2]==sum)    &&
                    (grid[i][j+2]+grid[i+1][j+1]+grid[i+2][j]==sum)
                )
                    ++flag;
            }
        }
        return flag;
    }
};

错误分析

第一次

没有考虑到给定的矩阵维度小于3×3

错误例子:
[[8]]

所以才加上了如下这个判断条件:

if(grid.size()<2||(*grid.begin()).size()<2)
            return flag;

第二次

没有注意到三阶幻方的定义中元素是由1-9构成的,之前自认为只要每行每列对角线和相等就行

错误例子1
[   [10,3,5],
    [1,6,11],
    [7,9,2]    ]
每行每列对角线和相等,但和不是15,同时元素不是在1-9内
错误例子2
[   [1,8,6],
    [10,5,0],
    [4,2,9]     ]
每行每列对角线和相等,和是15,但元素不是在1-9内

笔记

  1. 挨个读取对元素,然后进行判断,综上可知,判断是不是三阶幻方的条件如下:
    元素在1-9内+每行每列对角线和相等(=15)
    注:按题目要求所构成的三阶幻方的中心元素必然是5,可优先判别,因为C++判断一系列‘与’构成的逻辑时,只要前面的出错了就不会进行判断后面的条件

840. Magic Squares In Grid (5月27日)的更多相关文章

  1. 【Leetcode_easy】840. Magic Squares In Grid

    problem 840. Magic Squares In Grid solution: class Solution { public: int numMagicSquaresInside(vect ...

  2. 【LeetCode】840. Magic Squares In Grid 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 利用河图规律 暴力解法 日期 题目地址:https: ...

  3. 840. Magic Squares In Grid

    class Solution { public: int numMagicSquaresInside(vector<vector<int>>& grid) { ; in ...

  4. 840. Magic Squares In Grid ——weekly contest 86

    题目链接:https://leetcode.com/problems/magic-squares-in-grid/description attention:注意给定的数字不一定是1-9. time: ...

  5. 腾讯QQ认证空间4月27日已全面开放申请,欲进军自媒体

    今天看到卢松松的博客上爆出,腾讯QQ认证空间4月27日已全面开放申请的消息,这一消息出来, 马浩周根据提示方法进行申请,下面先说说腾讯QQ认证空间的申请方法: QQ认证空间开放申请公告地址:http: ...

  6. 2016年12月27日 星期二 --出埃及记 Exodus 21:22

    2016年12月27日 星期二 --出埃及记 Exodus 21:22 "If men who are fighting hit a pregnant woman and she gives ...

  7. 2016年11月27日 星期日 --出埃及记 Exodus 20:18

    2016年11月27日 星期日 --出埃及记 Exodus 20:18 When the people saw the thunder and lightning and heard the trum ...

  8. 2016年10月27日 星期四 --出埃及记 Exodus 19:12

    2016年10月27日 星期四 --出埃及记 Exodus 19:12 Put limits for the people around the mountain and tell them, `Be ...

  9. 2016年6月27日 星期一 --出埃及记 Exodus 14:24

    2016年6月27日 星期一 --出埃及记 Exodus 14:24 During the last watch of the night the LORD looked down from the ...

随机推荐

  1. CentOS 7运维管理笔记(9)----Apache 安全控制与认证

    Apache 提供了多种安全控制手段,包括设置Web访问控制.用户登陆密码认证及 .htaccess 文件等.通过这些技术手段,可以进一步提升Apache服务器的安全级别,减少服务器受攻击或数据被窃取 ...

  2. hack (浏览器兼容css hack)

    1.hack的原理 由于不同的浏览器对CSS的支持及解析结果不一样,还由于CSS中的优先级的关系.我们就可以根据这个来针对不同的浏览器来写不同的CSS. CSS Hack大致有3种表现形式,CSS类内 ...

  3. JavaScript中的appendChild()方法

    appendChild()方法是向节点添加最后一个子节点.也可以使用此方法从一个元素向另一个元素移动元素. 案例一:向节点添加最后一个子节点 <!DOCTYPE html> <htm ...

  4. 求解2的N次幂的问题(多种方法)

    #include <iostream> using namespace std; //计算2的N次幂 //一般方法,时间复杂度为2^n __int64 pow2(int n) { __in ...

  5. WebView设置透明和设置背景图片的方法

    http://blog.csdn.net/Vincent20111024/article/details/8478219 1. WebView若要设置背景图,直接设置web .setBackgroun ...

  6. Java中short、int、long、float、double的取值范围

    一.基本数据类型的特点,位数,最大值和最小值.1.基本类型:short 二进制位数:16 包装类:java.lang.Short 最小值:Short.MIN_VALUE=-32768 (-2的15此方 ...

  7. OutputStream-InputStream-FileOutputStream-FileInputStream-BufferedOutputStream-BufferedInputStream-四种复制方式-单层文件夹复制

    字节流两套:         java.lang.Object--java.io.OutputStream--java.io.FileOutputStream         java.lang.Ob ...

  8. request.getRequestDispatcher().forward(request.response)

    request.getRequestDispatcher().forward(request.response)中的那两个参数是哪里来的? 2010-11-09 23:13 QQ357169111 | ...

  9. 【Leetcode】【Medium】Construct Binary Tree from Inorder and Postorder Traversal

    Given inorder and postorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  10. M-PalindromeP-DP

    Palindrome Partitioning 动态规划+深度优先搜索 https://leetcode.com/discuss/23480/c-solution-with-dp-and-dfs-12 ...