1203 - Guarding Bananas
Time Limit: 3 second(s) Memory Limit: 32 MB

Once there was a lazy monkey in a forest. But he loved banana too much. One day there was a storm in the jungle and all the bananas fell from the trees. The monkey didn't want to lose any of the bananas. So, he wanted to find a banana such that he can eat that and he can also look after the other bananas. As he was lazy, he didn't want to move his eyes too wide. So, you have to help him finding the banana from where he can look after all the bananas but the degree of rotating his eyes is as small as possible. You can assume that the position of the bananas can be modeled as 2D points.

Here a banana is shown, from where the monkey can look after all the bananas with minimum eye rotation.

Input

Input starts with an integer T (≤ 13), denoting the number of test cases.

Each case starts with a line containing an integer n (1 ≤ n ≤ 105) denoting the number of bananas. Each of the next n lines contains two integers x y (-109 ≤ x, y ≤ 109) denoting the co-ordinate of a banana. There can me more than one bananas in the same co-ordinate.

Output

For each case, print the case number and the minimum angle in degrees. Errors less than 10-6 will be ignored.

Sample Input

Output for Sample Input

2

1

4 4

4

0 0

10 0

10 10

2 1

Case 1: 0

Case 2: 45.0000000

Note

Dataset is huge. Use faster I/O methods.

  • 题意:在所有给定的香蕉中找到一个香蕉,使得从这个香蕉看向其他香蕉的角度尽可能小的同时看到的香蕉数目尽可能多。
  • 由于香蕉可以化为半径忽略不计的二维平面上的点,所以可以想到,站在这些点的凸包的顶点处看过去的角度小并且看到的点更多,否则,总可以向这些定顶点处移动,使得看到的点更多或者角度更小。
  • 所以这道题就是求其凸包,然后找到里面最小的那个内角。
  •  #include<iostream>
    #include<algorithm>
    #include<cmath>
    #include<cstdio>
    #include<cstring>
    using namespace std;
    const int maxn = 1e5 + ;
    const double pi = acos(-1.0);
    const double eps = 1e-;
    int sgn(double x) {
    if (fabs(x) < eps)return ;
    if (x < )return -;
    else return ;
    }
    typedef struct point {
    double x, y;
    point() { }
    point(double a, double b) {
    x = a;
    y = b;
    }
    point operator -(const point &b) const {
    return point(x - b.x, y - b.y);
    }
    double operator *(const point &b)const {
    return x*b.x + y*b.y;
    }
    double operator ^(const point &b)const { //叉乘
    return x*b.y - y*b.x;
    }
    bool operator <(point b)const {
    return sgn(x - b.x) == ? sgn(y - b.y)< : x<b.x;
    }
    //返回pa,pb的夹角,该点看a,b的夹角,弧度制
    //弧度=度×π/180°
    //度=弧度×180°/π
    double rad(point a, point b) {
    point p = *this;
    return fabs(atan2(fabs((a - p) ^ (b - p)), (a - p)*(b - p)));
    }
    }point;
    point p[maxn];
    int n = , res[maxn];
    int top;//top模拟栈顶
    bool multi(point p1, point p2, point p0) { //判断p1p0和p2p0的关系,<0,p1p0在p2p0的逆时针方向,>0,p1p0在p2p0的顺时针方向
    return (p1.x - p0.x)*(p2.y - p0.y) >= (p2.x - p0.x)*(p1.y - p0.y);
    }
    double Graham() {
    int i, len;//top模拟栈顶
    sort(p, p + n);
    top = ;
    //少于3个点也就没有办法形成凸包
    if (n == )return ; res[] = ;
    if (n == )return ; res[] = ;
    if (n == )return ; res[] = ;
    for (i = ; i < n; i++) {
    while (top&&multi(p[i], p[res[top]], p[res[top - ]])) //如果当前这个点和栈顶两个点构成折线右拐了,就回溯到上一个点
    top--; //弹出栈顶
    res[++top] = i; //否则将这个点入栈
    }
    len = top;
    res[++top] = n - ;
    for (i = n - ; i >= ; i--) {
    while (top != len&&multi(p[i], p[res[top]], p[res[top - ]]))
    top--;
    res[++top] = i;
    }
    double ans =0x3f3f3f;
    res[top] = res[],res[top + ] = res[];
    for (int i = ; i <= top; i++) {
    ans = min(ans, p[res[i]].rad(p[res[i + ]], p[res[i - ]]));
    }
    return ans / pi * ;
    }
    inline int read()
    {
    int x = , f = ; char ch = getchar();
    while (ch<'' || ch>'') { if (ch == '-')f = -; ch = getchar(); }
    while (ch >= ''&&ch <= '') { x = x * + ch - ''; ch = getchar(); }
    return x*f;
    }
    int main(void) {
    int t;
    t = read();
    for (int cnt = ; cnt <= t; cnt++) {
    cin >> n;
    for (int i = ; i < n; i++) {
    p[i].x = read();
    p[i].y = read();
    }
    printf("Case %d: ", cnt);
    printf("%.7lf\n", Graham());
    }
    return ;
    }

LightOJ 1203--Guarding Bananas(二维凸包+内角计算)的更多相关文章

  1. LightOJ 1203 Guarding Bananas (凸包最小顶角)

    题目链接:LightOJ 1203 Problem Description Once there was a lazy monkey in a forest. But he loved banana ...

  2. 计算几何 二维凸包问题 Andrew算法

    凸包:把给定点包围在内部的.面积最小的凸多边形. Andrew算法是Graham算法的变种,速度更快稳定性也更好. 首先把全部点排序.依照第一keywordx第二keywordy从小到大排序,删除反复 ...

  3. 使用Graham扫描法求二维凸包的一个程序

    #include <iostream> #include <cstring> #include <cstdlib> #include <cmath> # ...

  4. luogu P2742 【模板】二维凸包 / [USACO5.1]圈奶牛Fencing the Cows

    题解: 二维凸包裸题 按照x坐标为第一关键字,y坐标为第二关键字排序 然后相邻判断叉积用单调队列搞过去 正反都做一次就好了 代码: #include <bits/stdc++.h> usi ...

  5. Luogu P2742 模板-二维凸包

    Luogu P2742 模板-二维凸包 之前写的实在是太蠢了.于是重新写了一个. 用 \(Graham\) 算法求凸包. 注意两个向量 \(a\times b>0\) 的意义是 \(b\) 在 ...

  6. 【洛谷 P2742】【模板】二维凸包

    题目链接 二维凸包板子..有时间会补总结的. #include <cstdio> #include <cmath> #include <algorithm> usi ...

  7. poj 2079 Triangle (二维凸包旋转卡壳)

    Triangle Time Limit: 3000MS   Memory Limit: 30000KB   64bit IO Format: %I64d & %I64u Submit Stat ...

  8. poj 2187 Beauty Contest(二维凸包旋转卡壳)

    D - Beauty Contest Time Limit:3000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u ...

  9. UVA 10652 Board Wrapping(二维凸包)

    传送门 刘汝佳<算法竞赛入门经典>P272例题6包装木板 题意:有n块矩形木板,你的任务是用一个面积尽量小的凸多边形把它们抱起来,并计算出木板占整个包装面积的百分比. 输入:t组数据,每组 ...

随机推荐

  1. React Native之React速学教程(中)

    概述 本篇为<React Native之React速学教程>的第一篇.本篇将从React的特点.如何使用React.JSX语法.组件(Component)以及组件的属性,状态等方面进行讲解 ...

  2. php接收post过来的json数据

    <html> <head> <title>json</title> <script src="//cdn.bootcss.com/jqu ...

  3. eclipse 出现 jar包找不到 问题记录

    同事在下载maven私服项目的时候,自动更新失败.maven 一直提示 parent 更新失败但是其他的项目都是正常的,这就奇怪了. 最后 仔细查询后,发现是  同事在下载项目时候,项目是分clien ...

  4. .net CombinedGeometry的合并模式

    <Page xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="h ...

  5. linux压缩

    zip:打包 :zip something.zip something (目录请加 -r 参数)解包:unzip something指定路径:-d 参数tar:打包:tar -zcvf somethi ...

  6. [问题记录]libpomelo的安装

    1. 描述: 按照github上的操作完成 Windows in your libpomelo project root directory open git bash and type in mkd ...

  7. 最短路径-Dijkstra算法与Floyd算法

    一.最短路径 ①在非网图中,最短路径是指两顶点之间经历的边数最少的路径. AE:1    ADE:2   ADCE:3   ABCE:3 ②在网图中,最短路径是指两顶点之间经历的边上权值之和最短的路径 ...

  8. oracle获得ddl语句

    dbms_metadata.get_ddl()用于获取对象的DDL,其具体用法如下.注意:在sqlplus里,为了更好的展示DDL,需要设置如下参数:set line 200set pagesize ...

  9. 来自Google资深工程师的API设计最佳实践

    来自Google资深工程师Joshua Bloch的分享:API设计最佳实践 为什么API设计如此重要?API是一个公司最重要的资产. 为什么API的设计对程序员如此重要? API一旦发布,出于兼容性 ...

  10. MATLAB入门学习(一)

    开始MATLAB入门啦,,,首先感谢xyy大神的帮助!然后我们开始学习吧!<( ̄︶ ̄)↗[GO!] 工作空间窗口:保存了你定义的常量,变量之类的,可以保存也可以被调用. 保存的话会生成一个mat ...