Description

Long long ago, there was a super computer that could deal with VeryLongIntegers(no VeryLongInteger will be negative). Do you know how this computer stores the VeryLongIntegers? This computer has a set of n positive integers: b1,b2,...,bn, which is called a basis for the computer.

The basis satisfies two properties:
1) 1 < bi <= 1000 (1 <= i <= n),
2) gcd(bi,bj) = 1 (1 <= i,j <= n, i ≠ j).

Let M = b1*b2*...*bn

Given an integer x, which is nonegative and less than M, the ordered n-tuples (x mod b1, x mod b2, ..., x mod bn), which is called the representation of x, will be put into the computer.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input.
Each test case contains three lines.
The first line contains an integer n(<=100).
The second line contains n integers: b1,b2,...,bn, which is the basis of the computer.
The third line contains a single VeryLongInteger x.

Each VeryLongInteger will be 400 or fewer characters in length, and will only contain digits (no VeryLongInteger will be negative).

Output
For each test case, print exactly one line -- the representation of x.
The output format is:(r1,r2,...,rn)
Sample Input
Copy sample input to clipboard
2

3
2 3 5
10 4
2 3 5 7
13
Sample Output
(0,1,0)
(1,1,3,6)
#include <iostream>
#include <string>
#include <string.h>
using namespace std; int* findMod(string str, int* arr, int len) {
int size = str.size();
int* arrt = new int[len];
memset(arrt, , sizeof(int) * len); for (int i = ; i != size; ++i) {
for (int j = ; j != len; ++j) {
arrt[j] = (arrt[j] * + (str[i] - '')) % arr[j];
}
}
return arrt;
} int main(int argc, char* argv[])
{ int T, n, *arr;
string x;
cin >> T;
while (T--) {
cin >> n;
arr = new int[n];
for (int i = ; i != n; ++i)
cin >> arr[i];
cin >> x;
int *result = findMod(x, arr, n);
cout << "(";
for (int i = ; i != n - ; i++)
cout << result[i] << ",";
cout << result[n - ] << ")" << endl;
} return ;
}

因为给的空间还是很大的,所以我在mod的时候用空间换时间,其实这样实现是不好的,因为申请的空间根本没释放。下面这样的话比较好一点,时间上也只是差了0.07多

sicily 1020. Big Integer的更多相关文章

  1. 大数求模 sicily 1020

        Search

  2. Sicily1020-大数求余算法及优化

    Github最终优化代码: https://github.com/laiy/Datastructure-Algorithm/blob/master/sicily/1020.c 题目如下: 1020. ...

  3. .Net Core CLR FileFormat Call Method( Include MetaData, Stream, #~)

    .Net Core  CLR PE 文件启动方法,找到函数入口点,调用整个.Net 程式宿主. 使用方法:可以利用Visual Studio新建一个控制台应用程序,然后生成DLL,替换掉本程序DLL, ...

  4. PAT 1020

    1020. Tree Traversals (25) Suppose that all the keys in a binary tree are distinct positive integers ...

  5. Sicily 1510欢迎提出优化方案

    这道题我觉得是除1000(A-B)外最简单的题了……不过还是提出一个小问题:在本机用gcc编译的时候我没包括string.h头文件,通过编译,为什么在sicily上却编译失败? 1510. Mispe ...

  6. HDU字符串基础题(1020,1039,1062,1088,1161,1200,2017)

    并不是很精简,随便改改A过了就没有再简化了. 1020. Problem Description Given a string containing only 'A' - 'Z', we could ...

  7. 【PAT】1020 Tree Traversals (25)(25 分)

    1020 Tree Traversals (25)(25 分) Suppose that all the keys in a binary tree are distinct positive int ...

  8. PAT 1020 Tree Traversals[二叉树遍历]

    1020 Tree Traversals (25)(25 分) Suppose that all the keys in a binary tree are distinct positive int ...

  9. HDU 1020:Encoding

    pid=1020">Encoding Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Ja ...

随机推荐

  1. Apple - Hdu5160

    Problem Description We are going to distribute apples to n children. Every child has his/her desired ...

  2. [牛客Wannafly挑战赛27D]绿魔法师

    description newcoder 给你一个空的可重集合\(S\). \(n\)次操作,每次操作给出\(x\),\(k\),\(p\),执行以下操作: \(opt\ 1\):在S中加入x. \( ...

  3. [洛谷P4345][SHOI2015]超能粒子炮·改

    题目大意:给你$n,k$,求:$$\sum\limits_{i=0}^k\binom n i\pmod{2333}$$题解:令$p=2333,f(n,k)\equiv\sum\limits_{i=0} ...

  4. redux的一些插件总结(redux-actions,reselect)

    redux本身还是过于简单,实际使用的时候需要配合许多插件. 下面是一些插件与vuex的功能对比 redux-actions <=> vuex的mutation的写法 reselect & ...

  5. LOJ 模拟赛

    1.LOJ 507 接竹竿 link dp[i]表示前i个的最大分数,所以dp[i]=max(dp[i-1],dp[j-1]+sum[i]-sum[j-1])   (color i ==color j ...

  6. JavaScript中Unicode值转字符

    在JavaScript中,将Unicode值转字符的方法: <!DOCTYPE html> <html> <head> <meta charset=" ...

  7. 使用html5的Geolocation API实现定位

    公司有个需求,需要获取用户的位置,所以看了下html5的Geolocation 这个新东西,发现挺好用的. <!DOCTYPE html> <html> <body> ...

  8. Data Mining的十种分析方法——摘自《市场研究网络版》谢邦昌教授

    Data Mining的十种分析方法: 记忆基础推理法(Memory-Based Reasoning:MBR)        记忆基础推理法最主要的概念是用已知的案例(case)来预测未来案例的一些属 ...

  9. jenkins Process leaked file descriptors

    https://stackoverflow.com/questions/17024441/process-leaked-file-descriptors-error-on-jenkins 1. BUI ...

  10. 【转载】Quick-Cocos2d-x文件结构分析

    在上一章我们讲过了Quick-Cocos2d-x中的环境搭建,这章我们分析下quick中的文件结构吧!打开quick的文件夹,可以看到如下的这些目录和文件: bin:存放各种与引擎相关的脚本 comp ...