一、PCA(Principal Component Analysis)

主成分分析,数据从原来的坐标系转换到新的坐标系,只保留新坐标系中的前面几个坐标轴,即对数据进行了降维处理

1、算法描述

(1)第一个新坐标轴:原数据集中方差最大的方向

(2)第二个新坐标轴:与第一个新坐标轴正交且具有最大方差的方向

(3)一直重复,重复次数为原始数据中特征的数目,但是到最后只保留最先产生的几个新坐标轴,而忽略余下的坐标轴

2、步骤

(1)计算样本数据各个特征的平均值

(2)样本各个特征的值:=样本各个特征的值-平均值

(3)计算协方差矩阵

(4)计算协方差矩阵的特征值和特征向量

(5)将特征值逆序排序

(6)保留最上面的N个特征向量

3、举例(待续)

二、SVD(Singular Value Decomposition)

奇异值分解,矩阵分解中的一种,矩阵分解是将数据矩阵分解为多个独立部分的过程

1、算法描述

Datam*n=Um*mm*nVTn*n

矩阵∑的对角元素是从大到小排列的,这些对角元素称为奇异值

在某个奇异值的数目(r个)之后,其他的奇异值都置为0,即数据集中仅有r个重要特征,而其余特征则都是噪声或者冗余特征

2、如何选取r

(1)保留矩阵中90%的能量信息:将所有的奇异值求平方和,将奇异值的平方和累加到90%为止

(2)当有上万个奇异值时,仅保留前面2000-3000个

3、举例(待续)

4、奇异值分解(待续)

PCA和SVD的更多相关文章

  1. 降维方法PCA与SVD的联系与区别

    在遇到维度灾难的时候,作为数据处理者们最先想到的降维方法一定是SVD(奇异值分解)和PCA(主成分分析). 两者的原理在各种算法和机器学习的书籍中都有介绍,两者之间也有着某种千丝万缕的联系.本文在简单 ...

  2. PCA和SVD(转)

    最近突然看到一个问题,PCA和SVD有什么关系?隐约记得自己照猫画虎实现的时候PCA的时候明明用到了SVD啊,但SVD(奇异值分解)和PCA的(特征值分解)貌似差得相当远,由此钻下去搜集了一些资料,把 ...

  3. What is an intuitive explanation of the relation between PCA and SVD?

    What is an intuitive explanation of the relation between PCA and SVD? 36 FOLLOWERS Last asked: 30 Se ...

  4. 数据预处理:PCA,SVD,whitening,normalization

    数据预处理是为了让算法有更好的表现,whitening.PCA.SVD都是预处理的方式: whitening的目标是让特征向量中的特征之间不相关,PCA的目标是降低特征向量的维度,SVD的目标是提高稀 ...

  5. 浅谈 PCA与SVD

    前言 在用数据对模型进行训练时,通常会遇到维度过高,也就是数据的特征太多的问题,有时特征之间还存在一定的相关性,这时如果还使用原数据训练模型,模型的精度会大大下降,因此要降低数据的维度,同时新数据的特 ...

  6. 机器学习实战基础(二十三):sklearn中的降维算法PCA和SVD(四) PCA与SVD 之 PCA中的SVD

    PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,P ...

  7. 机器学习实战基础(二十一):sklearn中的降维算法PCA和SVD(二) PCA与SVD 之 降维究竟是怎样实现

    简述 在降维过程中,我们会减少特征的数量,这意味着删除数据,数据量变少则表示模型可以获取的信息会变少,模型的表现可能会因此受影响.同时,在高维数据中,必然有一些特征是不带有有效的信息的(比如噪音),或 ...

  8. Machine Learning in Action – PCA和SVD

    降维技术, 首先举的例子觉得很好,因为不知不觉中天天都在做着降维的工作 对于显示器显示一个图片是通过像素点0,1,比如对于分辨率1024×768的显示器,就需要1024×768个像素点的0,1来表示, ...

  9. PCA和SVD最佳理解

    奇异值分解(SVD)原理与在降维中的应用 https://www.cnblogs.com/pinard/p/6251584.html 最通俗易懂的PCA主成分分析推导 https://blog.csd ...

  10. 特征向量、特征值以及降维方法(PCA、SVD、LDA)

    一.特征向量/特征值 Av = λv 如果把矩阵看作是一个运动,运动的方向叫做特征向量,运动的速度叫做特征值.对于上式,v为A矩阵的特征向量,λ为A矩阵的特征值. 假设:v不是A的速度(方向) 结果如 ...

随机推荐

  1. 【刷题】BZOJ 1001 [BeiJing2006]狼抓兔子

    Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个 ...

  2. C++中swap函数

    本文是我用到swap函数时,对其产生好奇,所以结合网上有关博文写下的.个人水平有限,若有错误的地方,欢迎留言指出.谢谢! 一.通用的函数交换模板 template<class T> voi ...

  3. HDOJ.2955 Robberies (01背包+概率问题)

    Robberies 算法学习-–动态规划初探 题意分析 有一个小偷去抢劫银行,给出来银行的个数n,和一个概率p为能够逃跑的临界概率,接下来有n行分别是这个银行所有拥有的钱数mi和抢劫后被抓的概率pi, ...

  4. 【单调队列】【P1714】 切蛋糕

    传送门 Description 今天是小Z的生日,同学们为他带来了一块蛋糕.这块蛋糕是一个长方体,被用不同色彩分成了N个相同的小块,每小块都有对应的幸运值. 小Z作为寿星,自然希望吃到的第一块蛋糕的幸 ...

  5. JavaScript身份证号码有效性验证

    最近需要对身份证合法性进行验证,实名验证是不指望了,不过原来的验证规则太过简单,只是简单的验证了身份证长度,现在业务需要加强下身份证验证规则,网上找到了不少资料,不过都不合偶的心意,无奈只好直接写一个 ...

  6. 破解wingide编辑器

    先到官网下载最新版的wingide(我下载的是5.1.11-1),然后安装,打开,出现下面的界面时选第三个,然后输入“ENX27-HWM6G-XYVFA-165PG”,如下图所示: 接下来你软件会给你 ...

  7. su对环境变量做了什么

    服务器是ubuntu12.04 用一个账户app,使用su - app得到的环境变量和直接ssh登录的环境变量不同. 导致su - app,无法执行ifconfig su - app 的环境变量 /u ...

  8. ACM1598并查集方法

    find the most comfortable road Problem Description XX星有许多城市,城市之间通过一种奇怪的高速公路SARS(Super Air Roam Struc ...

  9. SQL Server作业没有执行的解决方法

    SQL Server作业没有执行的解决方法  确保SQL Agent服务启动,并设置为自动启动,否则你的作业不会被执行    设置方法:  我的电脑--控制面板--管理工具--服务--右键 SQLSE ...

  10. jquery禁用按钮

    $('#sub').click(function () { var self = $(this); ,'#01b637') ){ return false; } }); function onesho ...