一、PCA(Principal Component Analysis)

主成分分析,数据从原来的坐标系转换到新的坐标系,只保留新坐标系中的前面几个坐标轴,即对数据进行了降维处理

1、算法描述

(1)第一个新坐标轴:原数据集中方差最大的方向

(2)第二个新坐标轴:与第一个新坐标轴正交且具有最大方差的方向

(3)一直重复,重复次数为原始数据中特征的数目,但是到最后只保留最先产生的几个新坐标轴,而忽略余下的坐标轴

2、步骤

(1)计算样本数据各个特征的平均值

(2)样本各个特征的值:=样本各个特征的值-平均值

(3)计算协方差矩阵

(4)计算协方差矩阵的特征值和特征向量

(5)将特征值逆序排序

(6)保留最上面的N个特征向量

3、举例(待续)

二、SVD(Singular Value Decomposition)

奇异值分解,矩阵分解中的一种,矩阵分解是将数据矩阵分解为多个独立部分的过程

1、算法描述

Datam*n=Um*mm*nVTn*n

矩阵∑的对角元素是从大到小排列的,这些对角元素称为奇异值

在某个奇异值的数目(r个)之后,其他的奇异值都置为0,即数据集中仅有r个重要特征,而其余特征则都是噪声或者冗余特征

2、如何选取r

(1)保留矩阵中90%的能量信息:将所有的奇异值求平方和,将奇异值的平方和累加到90%为止

(2)当有上万个奇异值时,仅保留前面2000-3000个

3、举例(待续)

4、奇异值分解(待续)

PCA和SVD的更多相关文章

  1. 降维方法PCA与SVD的联系与区别

    在遇到维度灾难的时候,作为数据处理者们最先想到的降维方法一定是SVD(奇异值分解)和PCA(主成分分析). 两者的原理在各种算法和机器学习的书籍中都有介绍,两者之间也有着某种千丝万缕的联系.本文在简单 ...

  2. PCA和SVD(转)

    最近突然看到一个问题,PCA和SVD有什么关系?隐约记得自己照猫画虎实现的时候PCA的时候明明用到了SVD啊,但SVD(奇异值分解)和PCA的(特征值分解)貌似差得相当远,由此钻下去搜集了一些资料,把 ...

  3. What is an intuitive explanation of the relation between PCA and SVD?

    What is an intuitive explanation of the relation between PCA and SVD? 36 FOLLOWERS Last asked: 30 Se ...

  4. 数据预处理:PCA,SVD,whitening,normalization

    数据预处理是为了让算法有更好的表现,whitening.PCA.SVD都是预处理的方式: whitening的目标是让特征向量中的特征之间不相关,PCA的目标是降低特征向量的维度,SVD的目标是提高稀 ...

  5. 浅谈 PCA与SVD

    前言 在用数据对模型进行训练时,通常会遇到维度过高,也就是数据的特征太多的问题,有时特征之间还存在一定的相关性,这时如果还使用原数据训练模型,模型的精度会大大下降,因此要降低数据的维度,同时新数据的特 ...

  6. 机器学习实战基础(二十三):sklearn中的降维算法PCA和SVD(四) PCA与SVD 之 PCA中的SVD

    PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,P ...

  7. 机器学习实战基础(二十一):sklearn中的降维算法PCA和SVD(二) PCA与SVD 之 降维究竟是怎样实现

    简述 在降维过程中,我们会减少特征的数量,这意味着删除数据,数据量变少则表示模型可以获取的信息会变少,模型的表现可能会因此受影响.同时,在高维数据中,必然有一些特征是不带有有效的信息的(比如噪音),或 ...

  8. Machine Learning in Action – PCA和SVD

    降维技术, 首先举的例子觉得很好,因为不知不觉中天天都在做着降维的工作 对于显示器显示一个图片是通过像素点0,1,比如对于分辨率1024×768的显示器,就需要1024×768个像素点的0,1来表示, ...

  9. PCA和SVD最佳理解

    奇异值分解(SVD)原理与在降维中的应用 https://www.cnblogs.com/pinard/p/6251584.html 最通俗易懂的PCA主成分分析推导 https://blog.csd ...

  10. 特征向量、特征值以及降维方法(PCA、SVD、LDA)

    一.特征向量/特征值 Av = λv 如果把矩阵看作是一个运动,运动的方向叫做特征向量,运动的速度叫做特征值.对于上式,v为A矩阵的特征向量,λ为A矩阵的特征值. 假设:v不是A的速度(方向) 结果如 ...

随机推荐

  1. [luogu3806]【模板】点分治1

    description 求树上长度为\(k\)的路径是否存在. data range \[n\le 10000,k\le 10000000\] solution 点分治复习... 使用普通的点分治枚举 ...

  2. [LOJ #6433]「PKUSC2018」最大前缀和

    题目大意:给你一个$n(n\leqslant20)$项的数列$A$,设重排后的数列为$A'$,令$pre_p=\sum\limits_{i=1}^pA'_i$,求$max\{pre_i\}$的期望,乘 ...

  3. [洛谷P5057][CQOI2006]简单题

    题目大意:有一个长度为$n$的$01$串,两个操作: $1\;l\;r:$把区间$[l,r]$翻转($0->1,1->0$) $2\;p:$求第$p$位是什么 题解:维护前缀异或和,树状数 ...

  4. [Leetcode] Maximum depth of binary tree二叉树的最大深度

    Given a binary tree, find its maximum depth. The maximum depth is the number of nodes along the long ...

  5. 洛谷 P1363 幻想迷宫 解题报告

    P1363 幻想迷宫 题目描述 背景 Background (喵星人LHX和WD同心协力击退了汪星人的入侵,不幸的是,汪星人撤退之前给它们制造了一片幻象迷宫.) WD:呜呜,肿么办啊-- LHX:mo ...

  6. 51nod 1215 数组的宽度&poj 2796 Feel Good(单调栈)

    单调栈求每个数在哪些区间是最值的经典操作. 把数一个一个丢进单调栈,弹出的时候[st[top-1]+1,i-1]这段区间就是弹出的数为最值的区间. poj2796 弹出的时候更新答案即可 #inclu ...

  7. Spring源码解析-Web容器启动过程

    Web容器启动过程,主要讲解Servlet和Spring容器结合的内容. 流程图如下: Web容器启动的Root Context是有ContextLoaderListener,一般使用spring,都 ...

  8. HDU 1535 SPFA 前向星存图优化

    Invitation Cards Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  9. HDU2444 :The Accomodation of Students(二分图染色+二分图匹配)

    The Accomodation of Students Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ( ...

  10. Java中的字符串常量池?

    参考:http://droidyue.com/blog/2014/12/21/string-literal-pool-in-java/index.html