OPENCV下SIFT算法使用方法笔记
这几天继续在看Lowe大神的SIFT神作,看的眼花手脚抽筋。也是醉了!!!!实在看不下去,来点干货。我们知道opencv下自带SIFT特征检测以及MATCH匹配的库,这些库完全可以让我们进行傻瓜似的操作。但实际用起来的时候还不是那么简单。下文将对一个典型的基于OPENCV的SIFT特征点提取以及匹配的例程进行分析,并由此分析详细的对OPENCV中SIFT算法的使用进行一个介绍。
OPENCV下SIFT特征点提取与匹配的大致流程如下:
读取图片-》特征点检测(位置,角度,层)-》特征点描述的提取(16*8维的特征向量)-》匹配-》显示
其中,特征点提取主要有两个步骤,见上行黄子部分。下面做具体分析。
1、使用opencv内置的库读取两幅图片
2、生成一个SiftFeatureDetector的对象,这个对象顾名思义就是SIFT特征的探测器,用它来探测衣服图片中SIFT点的特征,存到一个KeyPoint类型的vector中。这里有必要说keypoint的数据结构,涉及内容较多,具体分析查看opencv中keypoint数据结构分析,里面讲的自认为讲的还算详细(表打我……)。简而言之最重要的一点在于:
keypoint只是保存了opencv的sift库检测到的特征点的一些基本信息,但sift所提取出来的特征向量其实不是在这个里面,特征向量通过SiftDescriptorExtractor 提取,结果放在一个Mat的数据结构中。这个数据结构才真正保存了该特征点所对应的特征向量。具体见后文对SiftDescriptorExtractor 所生成的对象的详解。
就因为这点没有理解明白耽误了一上午的时间。哭死!
3、对图像所有KEYPOINT提取其特征向量:
得到keypoint只是达到了关键点的位置,方向等信息,并无该特征点的特征向量,要想提取得到特征向量就还要进行SiftDescriptorExtractor 的工作,建立了SiftDescriptorExtractor 对象后,通过该对象,对之前SIFT产生的特征点进行遍历,找到该特征点所对应的128维特征向量。具体方法参见opencv中SiftDescriptorExtractor所做的SIFT特征向量提取工作简单分析。通过这一步后,所有keypoint关键点的特征向量被保存到了一个MAT的数据结构中,作为特征。
4、对两幅图的特征向量进行匹配,得到匹配值。
两幅图片的特征向量被提取出来后,我们就可以使用BruteForceMatcher对象对两幅图片的descriptor进行匹配,得到匹配的结果到matches中,这其中具体的匹配方法暂没细看,过段时间补上。
至此,SIFT从特征点的探测到最后的匹配都已经完成,虽然匹配部分不甚了解,只扫对于如何使用OPENCV进行sift特征的提取有了一定的理解。接下来可以开始进行下一步的工作了。
附:使用OPENCV下SIFT库做图像匹配的例程
// opencv_empty_proj.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h"
#include <opencv2/opencv.hpp>
#include <opencv2/features2d/features2d.hpp>
#include<opencv2/nonfree/nonfree.hpp>
#include<opencv2/legacy/legacy.hpp>
#include<vector>
using namespace std;
using namespace cv; int _tmain(int argc, _TCHAR* argv[])
{
const char* imagename = "img.jpg"; //从文件中读入图像
Mat img = imread(imagename);
Mat img2=imread("img2.jpg"); //如果读入图像失败
if(img.empty())
{
fprintf(stderr, "Can not load image %s\n", imagename);
return -1;
}
if(img2.empty())
{
fprintf(stderr, "Can not load image %s\n", imagename);
return -1;
}
//显示图像
imshow("image before", img);
imshow("image2 before",img2); //sift特征检测
SiftFeatureDetector siftdtc;
vector<KeyPoint>kp1,kp2; siftdtc.detect(img,kp1);
Mat outimg1;
drawKeypoints(img,kp1,outimg1);
imshow("image1 keypoints",outimg1);
KeyPoint kp; vector<KeyPoint>::iterator itvc;
for(itvc=kp1.begin();itvc!=kp1.end();itvc++)
{
cout<<"angle:"<<itvc->angle<<"\t"<<itvc->class_id<<"\t"<<itvc->octave<<"\t"<<itvc->pt<<"\t"<<itvc->response<<endl;
} siftdtc.detect(img2,kp2);
Mat outimg2;
drawKeypoints(img2,kp2,outimg2);
imshow("image2 keypoints",outimg2); SiftDescriptorExtractor extractor;
Mat descriptor1,descriptor2;
BruteForceMatcher<L2<float>> matcher;
vector<DMatch> matches;
Mat img_matches;
extractor.compute(img,kp1,descriptor1);
extractor.compute(img2,kp2,descriptor2); imshow("desc",descriptor1);
cout<<endl<<descriptor1<<endl;
matcher.match(descriptor1,descriptor2,matches); drawMatches(img,kp1,img2,kp2,matches,img_matches);
imshow("matches",img_matches); //此函数等待按键,按键盘任意键就返回
waitKey();
return 0;
}
OPENCV下SIFT算法使用方法笔记的更多相关文章
- java 在centos6.5+eclipse环境下调用opencv实现sift算法
java 在centos6.5+eclipse环境下调用opencv实现sift算法,代码如下: import org.opencv.core.Core; import org.opencv.core ...
- OpenCV空洞填充算法
讨论帖: http://bbs.csdn.net/topics/391542633 在Matlab下,使用imfill可以很容易的完成孔洞填充操作,感觉这是一个极为常用的方法,然而不知道为什么Op ...
- OpenCV计算机视觉学习(13)——图像特征点检测(Harris角点检测,sift算法)
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 前言 ...
- 《sift算法详解》阅读笔记
原博客来自:http://blog.csdn.net/zddblog/article/details/7521424 定义: 尺度不变特征转化是一种计算机视觉算法,用于侦测和描述物体的局部性特征,在空 ...
- SIFT算法的应用--目标识别之Bag-of-words模型
原文:http://blog.csdn.net/v_JULY_v/article/details/6555899 SIFT算法的应用 -目标识别之用Bag-of-words模型表示一幅图像 作者:wa ...
- SIFT算法:确定特征点方向
SIFT算法:DoG尺度空间生产 SIFT算法:KeyPoint找寻.定位与优化 SIFT算法:确定特征点方向 SIFT算法:特征描述子 目录: 1.计算邻域梯度方向和幅值 2.计算梯度方向直方图 ...
- 【OpenCV】SIFT原理与源码分析:DoG尺度空间构造
原文地址:http://blog.csdn.net/xiaowei_cqu/article/details/8067881 尺度空间理论 自然界中的物体随着观测尺度不同有不同的表现形态.例如我们形 ...
- SIFT算法
备注:源代码还未理解,所以未附上——下周任务 一.SIFT算法 1.算法简介 尺度不变特征转换即SIFT (Scale-invariant feature transform)是一种计算机视觉的算法 ...
- SIFT算法原理(2)-极值点的精确定位
在SIFT解析(一)建立高斯金字塔中,我们得到了高斯差分金字塔: 检测DOG尺度空间极值点 SIFT关键点是由DOG空间的局部极值点组成的.以中心点进行3X3X3的相邻点比较,检测其是否是图像域和尺度 ...
随机推荐
- github删除文件夹
git rm -rf dirgit add .git commit -m 'remove dir'git push origin master //dir是要删除的文件夹路径
- SSD算法及Caffe代码详解(最详细版本)
SSD(single shot multibox detector)算法及Caffe代码详解 https://blog.csdn.net/u014380165/article/details/7282 ...
- 动画基础--基于Core Animation(2)
参考:https://zsisme.gitbooks.io/ios-/content/ 前面的文章动画基础--基于Core Animation(1)提到了图层的基本概念以及可动画参数几何学等知识. 本 ...
- Java读写锁(ReentrantReadWriteLock)学习
什么是读写锁 平时,我们常见的synchronized和Reentrantlock基本上都是排他锁,这些锁在同一时刻只允许一个线程进行访问,哪怕是读操作.而读写锁是维护了一对锁(一个读锁和一个写锁), ...
- 《java并发编程实战》读书笔记13--Java内存模型,重排序,Happens-Before
第16章 Java内存模型 终于看到这本书的最后一章了,嘿嘿,以后把这本书的英文版再翻翻.这本书中尽可能回避了java内存模型(JMM)的底层细节,而将重点放在一些高层设计问题,例如安全发布,同步策略 ...
- 深度学习方法:受限玻尔兹曼机RBM(四)对比散度contrastive divergence,CD
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入 上篇讲到,如果用Gibbs Sa ...
- hdu 5023
A Corrupt Mayor's Performance Art Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 100000/100 ...
- Python安装scikit-learn包
我先是按照网上说的下载了个setuptools,然后直接用这个工具去安装,可是安装scikit-learn包的时候确老是有错误,也不知道错误是啥,所以就不用setuptools来安装了. 我直接下载了 ...
- Sql Server递归查询(转)
有如下数据表 假如我们要查询ID为003的数据的所有子节点我们可以使用CTE 递归查询完成... if OBJECT_ID('tb','N') is not null drop table tb; c ...
- C++ cin.ignore()用法
cin.ignore(int a,char b); a为一行中最大读取字符长度,b为某一个字符.在缓冲区中寻找b,找到后忽略b以前的所有字符(包括b).如果在a的范围内还没有找到b,则忽略b以前的所有 ...