$dfs$,构造。

类似于$k$度限制生成树的想法,可以将$s$和$t$先从图中删去,将剩下的部分求连通块,每个连通块内部很容易构造生成树,每个连通块缩成一个点来处理。

连通块分三种:

$1$.只与$s$有边

$2$.只与$t$有边

$3$.与$s$和$t$都有边

前两种没办法,只能和$s$和$t$相连。如果没有第三种,那么$s$和$t$之前需要连一条边。如果有第三种,在第三种里面选出一个来和$s$、$t$连,其余的当做第一种和第二种处理。

连边的过程中判断$s$和$t$的度是否满足条件即可。

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<ctime>
#include<iostream>
using namespace std;
typedef long long LL;
const double pi=acos(-1.0),eps=1e-;
void File()
{
freopen("D:\\in.txt","r",stdin);
freopen("D:\\out.txt","w",stdout);
}
template <class T>
inline void read(T &x)
{
char c = getchar();
x = ;
while(!isdigit(c)) c = getchar();
while(isdigit(c))
{
x = x * + c - '';
c = getchar();
}
} struct Edge
{
int a,b,nx;
}e[];
int h[];
int n,m,sz,s,t,ds,dt;
int belong[],block;
vector<int>ansx,ansy; struct X
{
int e1,e2;
}w[]; set<int>SS,TT; void add(int a,int b)
{
e[sz].a=a; e[sz].b=b; e[sz].nx=h[a]; h[a]=sz++;
} void dfs(int x)
{
belong[x]=block;
for(int i=h[x];i!=-;i=e[i].nx)
{
int to=e[i].b;
if(belong[to]!=) continue;
if(to==s) continue;
if(to==t) continue; ansx.push_back(x);
ansy.push_back(to); dfs(to);
}
} int main()
{
cin>>n>>m; memset(h,-,sizeof h);
for(int i=;i<=m;i++)
{
int a,b; cin>>a>>b;
add(a,b); add(b,a);
}
cin>>s>>t>>ds>>dt; for(int i=;i<=n;i++)
{
if(i==s) continue;
if(i==t) continue;
if(belong[i]!=) continue;
block++; dfs(i);
} for(int i=;i<=block;i++) w[i].e1=w[i].e2=-; for(int i=;i<sz;i=i+)
{
if(e[i].a==s&&(e[i].b!=s&&e[i].b!=t))
{
SS.insert(belong[e[i].b]);
if(w[belong[e[i].b]].e1==-) w[belong[e[i].b]].e1=i;
}
if(e[i].b==s&&(e[i].a!=s&&e[i].a!=t))
{
SS.insert(belong[e[i].a]);
if(w[belong[e[i].a]].e1==-) w[belong[e[i].a]].e1=i;
}
if(e[i].a==t&&(e[i].b!=s&&e[i].b!=t))
{
TT.insert(belong[e[i].b]);
if(w[belong[e[i].b]].e2==-) w[belong[e[i].b]].e2=i;
}
if(e[i].b==t&&(e[i].a!=s&&e[i].a!=t))
{
TT.insert(belong[e[i].a]);
if(w[belong[e[i].a]].e2==-) w[belong[e[i].a]].e2=i;
}
} int sum=; vector<int>tmp;
for(int i=;i<=block;i++)
{
if(SS.count(i)&&TT.count(i)) { tmp.push_back(i); continue; }
if(SS.count(i))
{
ansx.push_back(e[w[i].e1].a);
ansy.push_back(e[w[i].e1].b);
ds--;
}
else
{
ansx.push_back(e[w[i].e2].a);
ansy.push_back(e[w[i].e2].b);
dt--;
}
} if(tmp.size()==)
{
ansx.push_back(s);
ansy.push_back(t);
ds--; dt--;
} else
{
ansx.push_back(e[w[tmp[]].e1].a);
ansy.push_back(e[w[tmp[]].e1].b);
ansx.push_back(e[w[tmp[]].e2].a);
ansy.push_back(e[w[tmp[]].e2].b); ds--; dt--; for(int i=;i<tmp.size();i++)
{
if(ds>)
{
ansx.push_back(e[w[tmp[i]].e1].a);
ansy.push_back(e[w[tmp[i]].e1].b);
ds--;
}
else if(dt>)
{
ansx.push_back(e[w[tmp[i]].e2].a);
ansy.push_back(e[w[tmp[i]].e2].b);
dt--;
}
} } if(ds<||dt<||ansx.size()!=n-) printf("No\n");
else
{
printf("Yes\n");
for(int i=;i<ansx.size();i++)
printf("%d %d\n",ansx[i],ansy[i]);
} return ;
}

CodeForces 723F st-Spanning Tree的更多相关文章

  1. codeforces 609E Minimum spanning tree for each edge

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

  2. [Educational Round 3][Codeforces 609E. Minimum spanning tree for each edge]

    这题本来是想放在educational round 3的题解里的,但觉得很有意思就单独拿出来写了 题目链接:609E - Minimum spanning tree for each edge 题目大 ...

  3. 【codeforces 723F】st-Spanning Tree

    [题目链接]:http://codeforces.com/contest/723/problem/F [题意] 给你一张图; 让你选择n-1条边; 使得这张图成为一颗树(生成树); 同时s的度数不超过 ...

  4. codeforces 723F : st-Spanning Tree

    Description There are n cities and m two-way roads in Berland, each road connects two cities. It is ...

  5. codeforces 609E. Minimum spanning tree for each edge 树链剖分

    题目链接 给一个n个节点m条边的树, 每条边有权值, 输出m个数, 每个数代表包含这条边的最小生成树的值. 先将最小生成树求出来, 把树边都标记. 然后对标记的边的两个端点, 我们add(u, v), ...

  6. Codeforces 1133 F2. Spanning Tree with One Fixed Degree 并查集+生成树

    好久没更新博客了,一直懒得动,这次更新一下. 题意大概是:给出一个图,求它的一个一号节点的度数恰好为D的生成树的方案. 一开始随便水了个乱搞贪心,不出意外并没有过. 仔细思考之后,对于这个问题我们可以 ...

  7. Codeforces 618D Hamiltonian Spanning Tree(树的最小路径覆盖)

    题意:给出一张完全图,所有的边的边权都是 y,现在给出图的一个生成树,将生成树上的边的边权改为 x,求一条距离最短的哈密顿路径. 先考虑x>=y的情况,那么应该尽量不走生成树上的边,如果生成树上 ...

  8. CodeForces 618D Hamiltonian Spanning Tree

    题意:要把所有的节点都访问一次,并且不能重复访问,有两种方式访问,一种是根据树上的路径 走和当前节点连接的下一个节点cost x, 或者可以不走树上边,直接跳到不与当前节点连接的节点,cost y 分 ...

  9. Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值

    E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...

  10. Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge 树上倍增

    E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...

随机推荐

  1. 51Nod 1031 骨牌覆盖 | Fibonacci

    Input 输入N(N <= 1000) Output 输出数量 Mod 10^9 + 7 Input示例 3 Output示例 3 思路:对于第x块骨牌的情况,我们用a[x]表示其方法数:其比 ...

  2. 【设计模式】 模式PK:抽象工厂模式VS建造者模式

    1.概述 抽象工厂模式实现对产品家族的创建,一个产品家族是这样的一系列产品:具有不同分类维度的产品组合,采用抽象工厂模式则是不需要关心构建过程,只关心什么产品由什么工厂生产即可.而建造者模式则是要求按 ...

  3. redis cluster以及master-slave在windows下环境搭建

    一.redis cluster环境搭建: 1.了解Redis Cluster原理: 详细了解可参考:http://doc.redisfans.com/topic/cluster-tutorial.ht ...

  4. No cached version of ..... available for offline mode.

    I had same error...Please Uncheck the offline work in Settings. File => Settings => Build, Exe ...

  5. WinRAR分割超大文件

    在自己的硬盘上有一个比较大的文件,想把它从网上通过E-Mail发送给朋友时,却发现对方的收信服务器不能够支持那么大的文件……,这时即使用ZIP等压缩软件也无济于事,因为该文件本身已经被压缩过了.于是许 ...

  6. 设计模式之Builder

    设计模式总共有23种模式这仅仅是为了一个目的:解耦+解耦+解耦...(高内聚低耦合满足开闭原则) 介绍: Builder模式是一步一步创建一个复杂的对象,它允许用户可以只通过指定复杂对象. 将一个复杂 ...

  7. vuejs怎么在服务器部署?

    通过npm run build 把生成的dist文件夹(不要上传文件夹)里的内容上传到http服务器上就可以通过 http来访问了,开发机上正常,上传以后 程序出现错误不能运行的原因99.99%的可能 ...

  8. C++之复制控制

    只有单个形参,而且该形参是对本类类型对象的引用(常用const修饰),这样的构造函数叫做复制构造函数(有时也称为拷贝构造函数),例如: class Person{ public: Person();/ ...

  9. Linux 内核通知链随笔【中】【转】

    转自:http://blog.chinaunix.net/uid-23069658-id-4364171.html 关于内核通知链不像Netlink那样,既可以用于内核与用户空间的通信,还能用于内核不 ...

  10. 自己动手一步步安装Linux系统

    自己动手一步步安装Linux系统 http://502245466.blog.51cto.com/7559397/1291910/