题目链接

BZOJ2924

题解

题面有误。。是\(45°\)

如果两个点间连线与\(x\)轴夹角在\(45°\)以内,那么它们之间连边

求最小路径覆盖 = 最长反链

由于\(45°\)比较难搞,我们利用复数翻转一下,逆时针旋转\(45°\)

这样就求一条从左上到右下的最长链

我们将所有点按\(x\)排序,令\(f[i]\)表示\(i\)结尾的最长链

那么

\[f[i] = max\{f[j] + 1\} \quad [j < i \; y_j > y_i]
\]

离散化一下用树状数组优化

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
#define lbt(x) (x & -x)
using namespace std;
const int maxn = 30005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
struct point{
double x,y; int d;
}p[maxn];
inline bool operator <(const point& a,const point& b){
return a.x == b.x ? a.d < b.d : a.x < b.x;
}
int n,tot;
double b[maxn];
inline int getn(double x){return lower_bound(b + 1,b + 1 + tot,x) - b;}
int s[maxn],f[maxn];
void modify(int u,int v){while (u) s[u] = max(s[u],v),u -= lbt(u);}
int query(int u){int re = 0; while (u <= n) re = max(re,s[u]),u += lbt(u); return re;}
int main(){
n = read(); double x,y,s2 = sqrt(2) / 2.0;
REP(i,n){
x = read(); y = read();
p[i] = (point){s2 * (x - y),s2 * (x + y)};
b[i] = p[i].y;
}
sort(b + 1,b + 1 + n); tot = 1;
for (int i = 2; i <= n; i++) if (b[i] != b[tot]) b[++tot] = b[i];
for (int i = 1; i <= n; i++) p[i].d = getn(p[i].y);
sort(p + 1,p + 1 + n); int ans = 0;
for (int i = 1; i <= n; i++){
f[i] = query(p[i].d + 1) + 1;
modify(p[i].d,f[i]);
ans = max(ans,f[i]);
}
printf("%d\n",ans);
return 0;
}

BZOJ2924 [Poi1998]Flat broken lines 【Dilworth定理 + 树状数组】的更多相关文章

  1. BZOJ2924 : [Poi1998]Flat broken lines

    首先旋转坐标系 $x'=x-y$ $y'=-x-y$ 则对于一个点,它下一步可以往它左上角任意一个点连线. 根据Dilworth定理,答案=这个偏序集最长反链的长度. 设f[i]为到i点为止的最长反链 ...

  2. TOJ 4105 Lines Counting (树状数组)

    题意:给定N条线段,每条线段的两个端点L和R都是整数.然后给出M个询问,每次询问给定两个区间[L1,R1]和[L2,R2],问有多少条线段满足:L1≤L≤R1 , L2≤R≤R2 ? 题解,采用离线做 ...

  3. 【BZOJ】2924: [Poi1998]Flat broken lines

    题意 平面上有\(n\)个点,如果两个点的线段与\(x\)轴的角在\([-45^{\circ}, 45^{\circ}]\),则两个点可以连线.求最少的折线(折线由线段首尾相连)使得覆盖所有点. 分析 ...

  4. 【XSY2727】Remove Dilworth定理 堆 树状数组 DP

    题目描述 一个二维平面上有\(n\)个梯形,满足: 所有梯形的下底边在直线\(y=0\)上. 所有梯形的上底边在直线\(y=1\)上. 没有两个点的坐标相同. 你一次可以选择任意多个梯形,必须满足这些 ...

  5. 【十分不错】【离线+树状数组】【TOJ4105】【Lines Counting】

    On the number axis, there are N lines. The two endpoints L and R of each line are integer. Give you ...

  6. TOJ 4105 Lines Counting(离线树状数组)

    4105.   Lines Counting Time Limit: 2.0 Seconds   Memory Limit: 150000K Total Runs: 152   Accepted Ru ...

  7. UVA - 1471 Defense Lines 树状数组/二分

                                  Defense Lines After the last war devastated your country, you - as the ...

  8. uva 12356 Army Buddies 树状数组解法 树状数组求加和恰为k的最小项号 难度:1

    Nlogonia is fighting a ruthless war against the neighboring country of Cubiconia. The Chief General ...

  9. codeforces 597C C. Subsequences(dp+树状数组)

    题目链接: C. Subsequences time limit per test 1 second memory limit per test 256 megabytes input standar ...

随机推荐

  1. 使用分治法求X的N次方,时间效率为lgN

    最近在看MIT的算法公开课,讲到分治法的求X的N次方时,只提供了数学思想,于是自己把代码写了下,虽然很简单,还是想动手写一写. int powerN(int x,int n){ if(n==0){ r ...

  2. git基础(2)

    三.查看提交历史日志查看·提交历史:git log 命令一个常用的选项是 -p,用来显示每次提交的内容差异. 你也可以加上 -2 来仅显示最近两次提交如果你想看到每次提交的简略的统计信息,你可以使用 ...

  3. angular-使用iframe做独立页(iframe传值到angular和iframe里请求后台数据)

    这个方法使用过两次.一次是在项目中嵌入一个表达式生成器.因为用别人做好的网页变成组件很难,而且里面用了jq,与angular思想相反不能用.另一次是因为想要单独引用样式.而innerHTML使用的样式 ...

  4. python 中的reload(sys)

    import sys  reload(sys)  sys.setdefaultencoding('utf-8') #python2中的使用方法 #重新载入 sys 模块,并设置默认编码为 utf8 & ...

  5. CSP201609-1:最大波动

    引言:CSP(http://www.cspro.org/lead/application/ccf/login.jsp)是由中国计算机学会(CCF)发起的"计算机职业资格认证"考试, ...

  6. Java进阶知识点:并发容器背后的设计理念

    一.背景 容器是Java编程中使用频率很高的组件,但Java默认提供的基本容器(ArrayList,HashMap等)均不是线程安全的.当容器和多线程并发编程相遇时,程序员又该何去何从呢? 通常有两种 ...

  7. Java Class Object

    Object类 它是所有类的基类. public class Person { } //实际上是 public class Person extends Object { } Object类的方法 t ...

  8. python学习摘要(2)--基本数据类型

    python申请存储空间是动态的.变量如同指针一样指向存储空间.多个变量会指向同一个存储空间(节省空间).当变量改变时,原来的地址单元并不会马上释放.(引用计数自行回收) c/c++根基性语言,想要什 ...

  9. tab键、快捷键、默认按钮、小数点输入的使用--四则运算

    1. 窗体Tab键的顺序设置 选中窗体-视图-tab键顺序 label不适用tab键 2. 热键设置和快捷键设置 热键:无论光标在哪都可以 快捷键:出现界面后才能按 添加label 更改label的T ...

  10. 安全的API接口解决方案

    在各种手机APP泛滥的现在,背后都有同样泛滥的API接口在支撑,其中鱼龙混杂,直接裸奔的WEB API大量存在,安全性令人堪优 在以前WEB API概念没有很普及的时候,都采用自已定义的接口和结构,对 ...