矩阵树这个东西……并不懂什么基尔霍夫矩阵……背了一下结论……
(顺便用这个东西加强了一下矩阵)
(打板子的时候还是该取负取负,因为不取负才有可能是负数,最后答案一定是正数???(ryf说一定是这样))
bzoj3534:[Sdoi2014]重建 矩阵树定理的一个小概念+板子(实数高斯消元)+处理精度(把0搞成一个很小的小数)
bzoj4596:[Shoi2016]黑暗前的幻想乡 容斥一下+板子(求逆元)
bzoj4031:[HEOI2015]小Z的房间 板子(辗转相除)
bzoj1002:[FJOI2007]轮状病毒 打表找规律+高精度
bzoj2467:[中山市选2010]生成树 手推/打表 小规律
bzoj1016:[JSOI2008]最小生成树计数 Kruskal类

Matrix-Tree定理题表的更多相关文章

  1. @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列

    目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...

  2. BZOJ.4031.[HEOI2015]小Z的房间(Matrix Tree定理 辗转相除)

    题目链接 辗转相除解行列式的具体实现? 行列式的基本性质. //864kb 64ms //裸的Matrix Tree定理.练习一下用辗转相除解行列式.(因为模数不是质数,所以不能直接乘逆元来高斯消元. ...

  3. [bzoj1016][JSOI2008]最小生成树计数 (Kruskal + Matrix Tree 定理)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  4. 【证明与推广与背诵】Matrix Tree定理和一些推广

    [背诵手记]Matrix Tree定理和一些推广 结论 对于一个无向图\(G=(V,E)\),暂时钦定他是简单图,定义以下矩阵: (入)度数矩阵\(D\),其中\(D_{ii}=deg_i\).其他= ...

  5. 数学-Matrix Tree定理证明

    老久没更了,冬令营也延期了(延期后岂不是志愿者得上学了?) 最近把之前欠了好久的债,诸如FFT和Matrix-Tree等的搞清楚了(啊我承认之前只会用,没有理解证明--),FFT老多人写,而Matri ...

  6. SPOJ.104.Highways([模板]Matrix Tree定理 生成树计数)

    题目链接 \(Description\) 一个国家有1~n座城市,其中一些城市之间可以修建高速公路(无自环和重边). 求有多少种方案,选择修建一些高速公路,组成一个交通网络,使得任意两座城市之间恰好只 ...

  7. HDU 4305 Lightning Matrix Tree定理

    题目链接:https://vjudge.net/problem/HDU-4305 解法:首先是根据两点的距离不大于R,而且中间没有点建立一个图.之后就是求生成树计数了. Matrix-Tree定理(K ...

  8. BZOJ.4894.天赋(Matrix Tree定理 辗转相除)

    题目链接 有向图生成树个数.矩阵树定理,复习下. 和无向图不同的是,度数矩阵改为入度矩阵/出度矩阵,分别对应外向树/内向树. 删掉第i行第i列表示以i为根节点的生成树个数,所以必须删掉第1行第1列. ...

  9. BZOJ.1016.[JSOI2008]最小生成树计数(Matrix Tree定理 Kruskal)

    题目链接 最小生成树有两个性质: 1.在不同的MST中某种权值的边出现的次数是一定的. 2.在不同的MST中,连接完某种权值的边后,形成的连通块的状态是一样的. \(Solution1\) 由这两个性 ...

随机推荐

  1. OSG-获取OSG的源代码和第三方库并编译

    获取OSG的源代码有很多方式. 这里说下其中的两个地方,第一就是中国的OSG网站http://www.osgchina.org/,这个网站目前应该是由中国西安恒歌科技维护,同时,西安恒歌科技也是一家已 ...

  2. Java学习 · 初识 容器和数据结构

    容器和数据结构 1.   集合的引入 a)     集合的使用场景:需要将一些相同结构的个体整合到一起时 i.           新闻列表 ii.           邮件列表 iii.       ...

  3. 孤荷凌寒自学python第八十三天初次接触ocr配置tesseract环境

    孤荷凌寒自学python第八十三天初次接触ocr配置tesseract环境 (完整学习过程屏幕记录视频地址在文末) 学习Python我肯定不会错过图片文字的识别,当然更重要的是简单的验证码识别了,今天 ...

  4. 孤荷凌寒自学python第八十一天学习爬取图片1

    孤荷凌寒自学python第八十一天学习爬取图片1 (完整学习过程屏幕记录视频地址在文末) 通过前面十天的学习,我已经基本了解了通过requests模块来与网站服务器进行交互的方法,也知道了Beauti ...

  5. 日历(Calendar)模块

    #usr/bin/python3 #! -*-conding : utf-8 -*- #2018.3.14 """ 日历(Calendar)模块 此模块的函数都是日历相关 ...

  6. Docker 镜像构建的时候,应该小心的坑

    不要改文件 如果run了以后,你还需要进入到容器中,修改容器的配置,那么,这个容器是危险的.一旦容器无法启动,就再也改不了配置.那么你就需要删除和重新run这个容器,而配置要再改一遍.一个可用的镜像在 ...

  7. SpringBoot项目打包成jar后,启动脚本

    将springboot项目打包成jar后,上传至服务器,每次都需要手敲命令,重新部署项目,可将这些命令写入脚本中,直接运行. 启动脚本(start.sh): CUR_PATH=$(cd "$ ...

  8. RDL/RDLC批量单据打印 [转]

    RDL/RDLC批量单据打印 使用RDL或RDLC进行单据打印时,单张单据打印比较直观简单,无需说明.下面我们来谈一下批量单据打印的实现方法.以下以RDL的ReportBuilder设计环境为例进行讲 ...

  9. 【转】c++面试基础

    1,关于动态申请内存 答:内存分配方式三种: (1)从静态存储区域分配:内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在. 全局变量,static变量. (2)在栈上创建:在执行函 ...

  10. from module import 和 import 的区别

    最近在用codecademy学python,遇到一些题目错误,小小记录一下 如from math import sqrt是把sqrt作为本文件的方法导入进来了,使用的时候只需要直接调用sqrt. 而如 ...