题目

点这里

题解

本题暴力可过,细节不必多说。

这里我主要是说明一下为什么当 \(n>11\) 时可以直接输出 \(0\) 。

首先,思考二维空间中,我们能保证最多能同时存在多少点,而还有好点存在?

答案是 \(5\) 个,为什么?

可以手画一下,二维平面内五个点构成“十”字结构。

在这种情况下,点数最多。

进行拓展——三维呢?提示:可以从二维进行拓展。

答案是 \(7\) 个,为什么?

首先,我们在三维坐标系中画出二维结论,大概是这个鸭子(注意,全都是直角)

为了让点更多,我们从二维中学到了一个结构——“十”字结构,这个结构能让点最多。

推广一下——其实我们是在构造直角。

同时,还有一个结论——对于 \(A,B,C\) 三个点,如果 \(A\) 是好点,那么 \(B,C\) 一定是坏点。

为了让点数最多,我们贪心地让只让一个点成为好点,也就是只要其他的点不干扰这个点,点就可以随便加。

而加点时,只要我们遵循“十”字结构,那么点一定会是最多。

显然,在上图中,中间那个点是好点,那么我们只需要让它继续保持是好点,同时我们构造更多的直角,那么我们可以画出三维最多的图:

显然,这个时候有 \(7\) 个点,有点像两个“十”拼在一起,中间的轴是同一个。

至于更高维,我们画不出来了,但是可以推广。

多一维,相当于可以新增加一个“十”,那么加的点是多少?

很容易算,\(5-3=2\) ,为什么 \(-3\) ,因为我们为了保证还有一个好点,让多个“十”的中轴绑在一起,减掉轴上的 \(3\) 个点,自然而然增加了 \(2\) 个。

那么,四维最多 \(9\) 个,五维 \(11\) 个。

因而当 \(n>11\) 时,直接输出 \(0\) 即可。

代码

#include<cstdio>

#define rep(i,__l,__r) for(signed i=__l,i##_end_=__r;i<=i##_end_;++i)
#define fep(i,__l,__r) for(signed i=__l,i##_end_=__r;i>=i##_end_;--i)
#define writc(a,b) fwrit(a),putchar(b)
#define mp(a,b) make_pair(a,b)
#define ft first
#define sd second
#define LL long long
#define ull unsigned long long
#define uint unsigned int
#define pii pair< int,int >
#define Endl putchar('\n')
// #define FILEOI
// #define int long long
// #define int unsigned #ifdef FILEOI
# define MAXBUFFERSIZE 500000
inline char fgetc(){
static char buf[MAXBUFFERSIZE+5],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,MAXBUFFERSIZE,stdin),p1==p2)?EOF:*p1++;
}
# undef MAXBUFFERSIZE
# define cg (c=fgetc())
#else
# define cg (c=getchar())
#endif
template<class T>inline void qread(T& x){
char c;bool f=0;
while(cg<'0'||'9'<c)f|=(c=='-');
for(x=(c^48);'0'<=cg&&c<='9';x=(x<<1)+(x<<3)+(c^48));
if(f)x=-x;
}
inline int qread(){
int x=0;char c;bool f=0;
while(cg<'0'||'9'<c)f|=(c=='-');
for(x=(c^48);'0'<=cg&&c<='9';x=(x<<1)+(x<<3)+(c^48));
return f?-x:x;
}
// template<class T,class... Args>inline void qread(T& x,Args&... args){qread(x),qread(args...);}
template<class T>inline T Max(const T x,const T y){return x>y?x:y;}
template<class T>inline T Min(const T x,const T y){return x<y?x:y;}
template<class T>inline T fab(const T x){return x>0?x:-x;}
inline int gcd(const int a,const int b){return b?gcd(b,a%b):a;}
inline void getInv(int inv[],const int lim,const int MOD){
inv[0]=inv[1]=1;for(int i=2;i<=lim;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
}
template<class T>void fwrit(const T x){
if(x<0)return (void)(putchar('-'),fwrit(-x));
if(x>9)fwrit(x/10);
putchar(x%10^48);
}
inline LL mulMod(const LL a,const LL b,const LL mod){//long long multiplie_mod
return ((a*b-(LL)((long double)a/mod*b+1e-8)*mod)%mod+mod)%mod;
} const int MAXN=1e3; struct point{
int a[6];
}p[MAXN+5]; int n,tail;
int ans[MAXN+5];
bool flg;int calc; signed main(){
#ifdef FILEOI
freopen("file.in","r",stdin);
freopen("file.out","w",stdout);
#endif
scanf("%d",&n);
rep(i,1,n)rep(j,1,5)p[i].a[j]=qread();
if(n>11)return puts("0"),0;
rep(i,1,n){
flg=false;
rep(j,1,n)if(i^j){
rep(k,1,n)if(k^i && k^j){
calc=0;
rep(t,1,5)calc+=(p[i].a[t]-p[j].a[t])*(p[i].a[t]-p[k].a[t]);
if(calc>0){flg=true;break;}
}
if(flg)break;
}
if(!flg)ans[++tail]=i;
}
writc(tail,'\n');
rep(i,1,tail)writc(ans[i],' ');
Endl;
return 0;
}

「题解」「CF850A」Five Dimensional Points的更多相关文章

  1. 「ZJOI2019」&「十二省联考 2019」题解索引

    「ZJOI2019」&「十二省联考 2019」题解索引 「ZJOI2019」 「ZJOI2019」线段树 「ZJOI2019」Minimax 搜索 「十二省联考 2019」 「十二省联考 20 ...

  2. 「题解」「美团 CodeM 资格赛」跳格子

    目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...

  3. 「题解」「HNOI2013」切糕

    文章目录 「题解」「HNOI2013」切糕 题目描述 思路分析及代码 题目分析 题解及代码 「题解」「HNOI2013」切糕 题目描述 点这里 思路分析及代码 题目分析 这道题的题目可以说得上是史上最 ...

  4. 「题解」JOIOI 王国

    「题解」JOIOI 王国 题目描述 考场思考 正解 题目描述 点这里 考场思考 因为时间不太够了,直接一上来就着手暴力.但是本人太菜,居然暴力爆 000 ,然后当场自闭- 一气之下,发现对 60pts ...

  5. 【题解】「P6832」[Cnoi2020]子弦

    [题解]「P6832」[Cnoi2020]子弦第一次写月赛题解( 首先第一眼看到这题,怎么感觉要用 \(\texttt{SAM}\) 什么高科技的?结果一仔细读题,简单模拟即可. 我们不难想出,出现最 ...

  6. 「题解报告」 P3167 [CQOI2014]通配符匹配

    「题解报告」 P3167 [CQOI2014]通配符匹配 思路 *和?显然无法直接匹配,但是可以发现「通配符个数不超过 \(10\) 」,那么我们可以考虑分段匹配. 我们首先把原字符串分成多个以一个通 ...

  7. 「bzoj1003」「ZJOI2006」物流运输 最短路+区间dp

    「bzoj1003」「ZJOI2006」物流运输---------------------------------------------------------------------------- ...

  8. 「bzoj1925」「Sdoi2010」地精部落 (计数型dp)

    「bzoj1925」「Sdoi2010」地精部落---------------------------------------------------------------------------- ...

  9. 「BZOJ1924」「SDOI2010」 所驼门王的宝藏 tarjan + dp(DAG 最长路)

    「BZOJ1924」[SDOI2010] 所驼门王的宝藏 tarjan + dp(DAG 最长路) -------------------------------------------------- ...

  10. 「LOJ#10051」「一本通 2.3 例 3」Nikitosh 和异或(Trie

    题目描述 原题来自:CODECHEF September Challenge 2015 REBXOR 1​​≤r​1​​<l​2​​≤r​2​​≤N,x⨁yx\bigoplus yx⨁y 表示 ...

随机推荐

  1. 【database】oracle集合 - Associative Arrays、Varrays、Nested Tables

    前言 参考oracle官方文档:PL/SQL Language Reference 11g Release 2  -  5 PL/SQL Collections and Records 可以去看下文档 ...

  2. [CTSC2008]网络管理 [树剖+整体二分]

    这题的复杂度可以到达惊人的\(\log^4\)据说还能跑过去(差点没吓死我 直接二分+树剖树套树(\(n \log^4 n\)) 一个\(\log\)也不少的4\(\log\) 但是我有个\(\log ...

  3. 关于Swagger会报AbstractSerializableParameter类的异常问题

    SpringBoot-2.2.1.RELEASE 集成 swagger-ui-2.9.2 时,每次在访问到页面时总是报AbstractSerializableParameter类的异常错误,大概内容如 ...

  4. 【你不知道的javaScript 中卷 笔记2】javaScript中的类型转换

    1.1 对象内部属性 [[Class]] 常见的原生函数: String() Number() Boolean() Array() Object() Function() RegExp() Date( ...

  5. ActiveMQ的JMS消息可靠机制

    JMS消息可靠机制 ActiveMQ消息签收机制: 客戶端成功接收一条消息的标志是一条消息被签收,成功应答. 消息的签收情形分两种: 1.带事务的session 如果session带有事务,并且事务成 ...

  6. git三剑客笔记

    看了git三剑客视频总结的笔记,只给自己参考. 常用命令 查看分支:git branch 创建分支:git branch <name> 切换分支:git checkout <name ...

  7. laravel框架使用阿里短信接入

    EG: accessKeyid和accessKeySecret还有模板ID.签名名称这几项必要参数自己去阿里云获取一.下载SDK和demo 下载并解压后 在laravel框架的app目录下创建libs ...

  8. Hadoop的安装(2)---Hadoop配置

    一:安装JDK hadoop2.x最低jdk版本要求是:jdk1.7(不过推荐用最新的:jdk1.8,因为jdk是兼容旧版本的,而且我们使用的其他软件可能要求的jdk版本较高) 下载地址:https: ...

  9. 51Nod 1182 完美字符串 (贪心)

    约翰认为字符串的完美度等于它里面所有字母的完美度之和.每个字母的完美度可以由你来分配,不同字母的完美度不同,分别对应一个1-26之间的整数. 约翰不在乎字母大小写.(也就是说字母F和f)的完美度相同. ...

  10. 分类问题(三)混淆矩阵,Precision与Recall

    混淆矩阵 衡量一个分类器性能的更好的办法是混淆矩阵.它基于的思想是:计算类别A被分类为类别B的次数.例如在查看分类器将图片5分类成图片3时,我们会看混淆矩阵的第5行以及第3列. 为了计算一个混淆矩阵, ...