KDD: Knowledge Discovery and Data Mining (KDD)

Insititute: 复旦大学,中科大

Problem: time series prediction; modelling extreme events;

overlook the existence of extreme events, which result in weak performance when applying them to real time series.

为什么研究extreme events: Extreme events are rare and random, but do play a critical role in many real applications, such as the forecasting of financial crisis and natural disasters.

the weakness of deep learning methods roots in the conventional form of quadratic loss平方损失; --------> this paper use the extreme value theory极值理论 and develop a new form of loss for detecting the future occurrence of extreme events: extreme value loss.

普通预测: quadratic loss

极值预测:extreme value loss

Use memory network to memorize extreme events in historical records. EVL + memory network

Introduction:

time series prediction: classical research topic.

applications: climate prediction and stocks price monitoring;

Statistical methods: autoregressive moving average ARMA; nonlinear autoregressive exogenous NARX;

RNN (LSTM and GRU, gated recurrent unit); Compared with traditional methods, one of the major advantages of RNN structure is that it enables deep non-linear modeling of temporal patterns.

data imbalance and extreme events are harmful to deep learning models????; 值得验证

what are extreme events in time series: extremely small or large values of irregular and rare occurrences.

How to find extreme events? use certain thresholds to label extreme events

the randomness of extreme events have limited degrees of freedom (DOF)

end-to-end framewark.

underfitting and overfitting training problem;

Related work:

extreme events: 极大阈值 + 极小阈值

重尾分布

extreme value theory;

PROBLEMS CAUSED BY EXTREME EVENTS

conclusion: such a model would perform relatively poor if the true distribution of data in series is heavy-tailed.

underfit and overfit phenomenon

PREDICTING TIME-SERIES DATA WITH EXTREME EVENTS

Two factors: memorizing extreme events and modelling tail distribution;   memory network  to memorize the characteristic of extreme events; EVL

Memory network module:

1. Assumption: As pointed out by Ghil et al., extreme events in time-series data often show some form of temporal regularity [19]. 极值事件是有时间规律的,这是前提,如果没有这个前提,那么极值事件的研究是没有意义的。对于自然界的事物,如果没有规律性,那么无法进行建模。

2. windows sequence, wj -------- then use GRU to embed each window into feature space. wj as input,

Qi as the extreme events vector.  add attention mechanism as a part of the weight and update the output.

Extreme value loss:

Optimization: a direct thought is to combine the predicted outputs ot with the prediction of the occurrence of extreme events,

方差损失上增加了一个对于极值事件的惩罚项。

??这只能算作loss function,怎么算作optimization呢?

Effectiveness of Time Series Prediction

针对两个真实数据库(climate and stock),一个伪造数据库上进行了实验,以rooted mean square error作为度量指标,在预测上约准确了0.01-0.08

但是看结果输出图,在极值上的预测结果确实好了。

Supplementary knowledge:

1. 张老师是战略能力很强,但是由于科研不在一线,导致战术可能会出现偏差。

2. 做交叉领域的文章时,i.可以做方法,ii.可以和领域结合,在领域里make sense, 有影响. 但如果四不像,两边都不会要。

3. 科研过程是一个严谨的流程体系,有一定的方法规律可循,不是瞎打一耙。

4. 其实真正重要的还是loss function怎么定,optimization 如何做,以及tailed distribution的一些现象。本质是数学问题,而非学习各种网络框架,最终还是要看deep learning 那本书和微积分。

PP: Modeling extreme events in time series prediction的更多相关文章

  1. PP: A dual-stage attention-based recurrent neural network for time series prediction

    Problem: time series prediction The nonlinear autoregressive exogenous model: The Nonlinear autoregr ...

  2. (转)LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION

    LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION Wed 21st Dec 2016   Neural Networks these days are th ...

  3. (zhuan) LSTM Neural Network for Time Series Prediction

    LSTM Neural Network for Time Series Prediction Wed 21st Dec 2016 Neural Networks these days are the ...

  4. PP: Composite visual mapping for time series visualization

    However: The conventional visual mapping maps each data attribute onto a single visual channel Purpo ...

  5. PP: Multi-Horizon Time Series Forecasting with Temporal Attention Learning

    Problem: multi-horizon probabilistic forecasting tasks; Propose an end-to-end framework for multi-ho ...

  6. PP: Time series clustering via community detection in Networks

    Improvement can be done in fulture:1. the algorithm of constructing network from distance matrix. 2. ...

  7. Autocorrelation in Time Series Data

    Why Time Series Data Is Unique A time series is a series of data points indexed in time. The fact th ...

  8. 【转载】Chaotic Time-Series Prediction

    原文地址:https://cn.mathworks.com/help/fuzzy/examples/chaotic-time-series-prediction.html?requestedDomai ...

  9. PP: Soft-DTW: a differentiable loss function for time-series

    Problem: new loss Label: new loss; Abstract: A differentiable learning loss; Introduction: supervise ...

随机推荐

  1. Electron – 基础学习(3): 项目打包成exe桌面应用 之electron-builder

    前次用 electron-packager 打包成功,这次改用 electron-builder 打包,然后根据项目中实际需要进行选择使用. 第一步:全局安装 electron-builder,便于系 ...

  2. 浅谈centos8与centos7

    距离centos8.0(现在已经更新到8.1了)的发布已经过去几个月了,作为一个刚刚接触过几个月centos的萌新来说,本文想通过实际的操作体验来说对比一下centos8代与7代 首先,centos8 ...

  3. MySQL数据库root密码忘记丢失重置方法

    对于DBA来说,丢失超管用户root的密码是致命的, 可以通过添加--ship-grant-tables参数来跳过权限表. 1.忘记root密码,进不去数据库: 这个时候需要强制停库,先查看MySQL ...

  4. Java实体对象为什么要实现Serializable接口?

    前言 Java实体对象为什么一定要实现Serializable接口呢?在学JavaSE的时候有些实体对象不实现Serializable不是也没什么影响吗? 最近在学习mybatis的时候发现,老师写的 ...

  5. STL专题

    一.algorithm 1.sort 问题1:给你n个整数,请按从大到小的顺序输出其中前m大的数. Input:每组测试数据有两行,第一行有两个数n,m(0<n,m<1000000),第二 ...

  6. centos7 lnmp环境搭建

    1- 安装gcc c++编译器 yum install gcc gcc-c++ cmake 2- 安装nginx-1.8.1及依赖包 2.1- 安装nginx依赖包 yum -y install pc ...

  7. XSY2666

    题意 有\(n\)种颜色的球,第i种有\(a_i\)个.设\(m=\sum a_i\).你要把这\(m\)个小球排成一排.有\(q\)个询问,每次给你一个\(x\),问你有多少种方案使得相邻的小球同色 ...

  8. [CF1311F] Moving Points - 树状数组

    Solution 按 \(x\) 关键字升序排序,依次枚举每个点 考虑对任意 \(x_j < x_i\),那么当 \(v_j \leq v_i\) 时,它们不会相交,且 \(dis\) 就是它们 ...

  9. springboot web - 建立路由

    一. 测试代码 @RestController @RequestMapping("/book") public class BookController { @PostMappin ...

  10. java通过递归统计文件大小

    思路就是通过文件的遍历,对一个文件夹中的非目录文件进行大小统计,并对其中目录文件进行相同的遍历操作,代码如下: package word; import java.io.File; import ja ...