【HAOI2015】树上染色

这题思路好神仙啊,首先显然是树形dp,f[i][j]表示在以i为根的子树中选j个黑点对答案的贡献(并不是当前子树最大值),dp时只考虑i与儿子连边的贡献。此时(i,son[i])产生的收益是(设子树大小为size[i])子树上的黑点个数(j)与子树外的黑点个数(m - j)的乘积乘上这条边的边权(w[i])加上子树上白点的个数(size[i] - j)乘以子树外白点的个数(n - m - size[i] + j)再乘以边权,这些贡献是在加入了根节点以后才产生的新的贡献,与子树上黑白点如何分配无关。

#include<iostream>
#include<cstring>
#include<cstdio>
#define int LL
#define LL long long
#define ma(x) memset(x,0,sizeof(x))
#define MAXN 3010
using namespace std;
struct edge
{
int u,v,w,nxt;
#define u(x) ed[x].u
#define v(x) ed[x].v
#define w(x) ed[x].w
#define n(x) ed[x].nxt
}ed[2000000];
int first[MAXN],num_e;
#define f(x) first[x]
int f[MAXN][MAXN],du[MAXN],root;
int n,nk,size[MAXN],tmp[MAXN];
void dfs(int x,int fa)
{
size[x]=1;
for(int i=f(x);i;i=n(i))
if(v(i)!=fa)dfs(v(i),x);
for(int i=f(x);i;i=n(i))
if(v(i)!=fa)
{
ma(tmp);
for(int j=0;j<=size[x]&&j<=nk;j++)
for(int k=0;k<=size[v(i)]&&k+j<=nk;k++)
{
tmp[j+k]=max(tmp[j+k],f[x][j]+f[v(i)][k]+k*(nk-k)*w(i)+(size[v(i)]-k)*(n-nk-size[v(i)]+k)*w(i));
}
for(int j=0;j<=nk;j++)
f[x][j]=tmp[j];
size[x]+=size[v(i)];
}
}
inline void add(int u,int v,int w);
signed main()
{
// freopen("in.txt","r",stdin);
// freopen("2.in","r",stdin); scanf("%lld%lld",&n,&nk);
int a,b,c;
for(int i=1;i<n;i++)
{
scanf("%lld%lld%lld",&a,&b,&c);
du[a]++;du[b]++;add(a,b,c);add(b,a,c);
}
for(int i=1;i<=n;i++)if(du[i]==1){root=i;break;}
dfs(root,0);
cout<<f[root][nk]<<endl;
}
inline void add(int u,int v,int w)
{
++num_e;
u(num_e)=u;
v(num_e)=v;
w(num_e)=w;
n(num_e)=f(u);
f(u)=num_e;
}

【HAOI2015】树上染色的更多相关文章

  1. bzoj 4033: [HAOI2015]树上染色 [树形DP]

    4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...

  2. BZOJ4033: [HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3461  Solved: 1473[Submit][Stat ...

  3. BZOJ4033 HAOI2015 树上染色 【树上背包】

    BZOJ4033 HAOI2015 树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白 ...

  4. [BZOJ4033][HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2437  Solved: 1034[Submit][Stat ...

  5. 【BZOJ4033】[HAOI2015]树上染色 树形DP

    [BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...

  6. BZOJ_4033_[HAOI2015]树上染色_树形DP

    BZOJ_4033_[HAOI2015]树上染色_树形DP Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的 ...

  7. BZOJ 4033[HAOI2015] 树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3188  Solved: 1366[Submit][Stat ...

  8. [HAOI2015]树上染色(树形dp)

    [HAOI2015]树上染色 题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所 ...

  9. [HAOI2015]树上染色(树上dp)

    [HAOI2015]树上染色 这种要算点对之间路径的长度和的题,难以统计每个点的贡献.这个时候一般考虑算每一条边贡献了哪些点对. 知道这个套路以后,那么这题就很好做了. 状态:设\(dp[u][i]\ ...

  10. [HAOI2015]树上染色 树状背包 dp

    #4033. [HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的N-K个点染成白 ...

随机推荐

  1. INotitypropertyChanged

    WPF数据绑定(要是后台类对象的属性值发生改变,通知在“client界面与之绑定的控件值”也发生改变须要实现INotitypropertyChanged接口) MainWindow.xaml < ...

  2. 锋利的JQuery学习之JQuery中的事件

    一.加载DOM 在页面加载完毕之后,浏览器会通过javascript为dom元素添加事件,在常规的javascript中使用window.onload方法,而在jQuery中使用的是$(documen ...

  3. redis 原生操作 & python操作redis

    一.基本介绍 1.简介 Redis是由意大利人Salvatore Sanfilippo(网名:antirez)开发的一款内存高速缓存数据库.Redis全称为:Remote Dictionary Ser ...

  4. DjangoORM查询、分页、ckeditor

    查询数据 Django的批量查询(查询所有,或者条件查询)返回的是queryset对象. Queryset对象是一个惰性对象,在不执行 1.排序 2.循环 3.截取 操作的情况下,不会遍历序列的内容. ...

  5. 解决Cesium1.50对gltf2.0/3dtiles数据读取的问题

    问题说明 Cesium 1.50(2018/10/01)版本打开3dtiles可能会出现加载不上导致渲染停止的错误. 错误说明为:RuntimeError: Unsupported glTF Exte ...

  6. Linux下根目录root扩容

    参考博客:https://blog.csdn.net/qq_36527339/article/details/81772996 1.首先虚拟机关机 —> 选中要扩容的虚拟机 —>编辑虚拟机 ...

  7. day36 11-Hibernate中的事务:当前线程中的session

    如果你没有同一个session开启事务的话,那它两是一个独立的事务.必须是同一个session才有效.它给我们提供一个本地线程的session.这个session就保证了你是同一个session.其实 ...

  8. 导入pymysql模块出错:No module named 'pymysql'

    前提: 使用的版本为:Python 3.6.4 pymysql已经被成功安装了,并通过命令行的方式验证已成功安装. 但在pycharm中运行工程时候时候报错:No module named 'pymy ...

  9. 如何高效地在github上找开源项目学习?

    1.高级条件组合(精确搜索) in:readme 微服务 stars:>1000 in:readme spring security stars:>3000 in:name python  ...

  10. [Vue CLI 3] 插件开发中的 genCacheConfig 细节研究

    在 @vue/cli-plugin-babel/index.js 中: api.genCacheConfig('babel-loader', {}, []) 我们看一下 api.genCacheCon ...