LOJ #3119. 「CTS2019 | CTSC2019」随机立方体 组合计数+二项式反演
好神的一道计数题呀.
code:
#include <cstdio>
#include <algorithm>
#include <cstring>
#define N 5000003
#define ll long long
#define mod 998244353
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
int invg[N],dp[N],f[N],fac[N],inv[N];
ll g[N];
int qpow(int x,int y)
{
int tmp=1;
for(;y;y>>=1,x=(ll)x*x%mod)
if(y&1) tmp=(ll)tmp*x%mod;
return tmp;
}
int C(int x,int y)
{
return (ll)fac[x]*inv[y]%mod*inv[x-y]%mod;
}
int INV(int x) { return qpow(x,mod-2); }
void solve()
{
int n,m,l,mi,kth,i,j;
scanf("%d%d%d%d",&n,&m,&l,&kth);
mi=min(min(n,m),l);
if(kth>mi) { printf("0\n"); return ; }
ll tot=1ll*n*m%mod*l%mod,in=1ll;
g[0]=tot%mod;
for(i=1;i<=mi;++i)
{
g[i]=(tot-1ll*(n-i)*(m-i)%mod*(l-i)%mod+mod)%mod;
in=in*g[i]%mod;
}
invg[mi]=qpow(in,mod-2);
for(i=mi-1;i>=0;--i) invg[i]=(ll)invg[i+1]*g[i+1]%mod;
f[0]=1;
for(i=0;i<mi;++i) f[i+1]=(ll)f[i]*(n-i)%mod*(m-i)%mod*(l-i)%mod;
for(i=0;i<=mi;++i) dp[i]=(ll)f[i]*invg[i]%mod;
int ans=0;
for(i=kth;i<=mi;++i)
{
int d=((i-kth)&1)?(mod-1):1;
(ans+=(ll)d*C(i,kth)%mod*dp[i]%mod)%=mod;
}
printf("%d\n",ans);
}
void init()
{
fac[0]=1;
for(int i=1;i<N;i++) fac[i]=(ll)fac[i-1]*i%mod;
inv[N-1]=qpow(fac[N-1],mod-2);
for(int i=N-2;i>=0;i--) inv[i]=(ll)inv[i+1]*(i+1)%mod;
}
int main()
{
// setIO("input");
init();
int i,j,T;
scanf("%d",&T);
while(T--) solve();
return 0;
}
LOJ #3119. 「CTS2019 | CTSC2019」随机立方体 组合计数+二项式反演的更多相关文章
- LOJ #3119「CTS2019 | CTSC2019」随机立方体 (容斥)
博客链接 里面有个下降幂应该是上升幂 还有个bk的式子省略了k^3 CODE 蛮短的 #include <bits/stdc++.h> using namespace std; const ...
- 【LOJ】#3119. 「CTS2019 | CTSC2019」随机立方体
题解 用容斥,算至少K个极大值的方案数 我们先钦定每一维的K个数出来,然后再算上排列顺序是 \(w_{k} = \binom{n}{k}\binom{m}{k}\binom{l}{k}(k!)^3\) ...
- 「CTS2019 | CTSC2019」随机立方体 解题报告
「CTS2019 | CTSC2019」随机立方体 据说这是签到题,但是我计数学的实在有点差,这里认真说一说. 我们先考虑一些事实 如果我们在位置\((x_0,y_0,z_0)\)钦定了一个极大数\( ...
- LOJ 3119: 洛谷 P5400: 「CTS2019 | CTSC2019」随机立方体
题目传送门:LOJ #3119. 题意简述: 题目说的很清楚了. 题解: 记恰好有 \(i\) 个极大的数的方案数为 \(\mathrm{cnt}[i]\),则答案为 \(\displaystyle\ ...
- LOJ3119. 「CTS2019 | CTSC2019」随机立方体 二项式反演
题目传送门 https://loj.ac/problem/3119 现在 BZOJ 的管理员已经不干活了吗,CTS(C)2019 和 NOI2019 的题目到现在还没与传上去. 果然还是 LOJ 好. ...
- Loj #3124. 「CTS2019 | CTSC2019」氪金手游
Loj #3124. 「CTS2019 | CTSC2019」氪金手游 题目描述 小刘同学是一个喜欢氪金手游的男孩子. 他最近迷上了一个新游戏,游戏的内容就是不断地抽卡.现在已知: - 卡池里总共有 ...
- LOJ #2542. 「PKUWC 2018」随机游走(最值反演 + 树上期望dp + FMT)
写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT (不是每个人都有那么厉害啊 , 我好菜啊) 而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT ...
- LOJ 3124 「CTS2019 | CTSC2019」氪金手游——概率+树形DP
题目:https://loj.ac/problem/3124 看了题解:https://www.cnblogs.com/Itst/p/10883880.html 先考虑外向树. 考虑分母是 \( \s ...
- @loj - 3120@ 「CTS2019 | CTSC2019」珍珠
目录 @description@ @solution@ @accepted code@ @details@ @description@ 有 \(n\) 个在范围 \([1, D]\) 内的整数均匀随机 ...
随机推荐
- 深入分析Java反射(三)-泛型
前提 Java反射的API在JavaSE1.7的时候已经基本完善,但是本文编写的时候使用的是Oracle JDK11,因为JDK11对于sun包下的源码也上传了,可以直接通过IDE查看对应的源码和进行 ...
- C# 把带有父子关系的数据转化为------树形结构的数据 ,以及 找出父子级关系的数据中里面的根数据Id
紧接上一篇,将List<Menu>的扁平结构数据, 转换成树形结构的数据 返回给前端 , 废话不多说,开撸! --------------------- 步骤: 1. 建 Menu ...
- 【Bullet引擎】Bullet物理引擎简单说明
说明 Bullet是一款开源的物理模拟计算引擎,包括刚体.柔体.弹性体等,是世界三大物理模拟引擎之一(包括Havok和PhysX),被广泛应用于游戏开发(GTA5等)和电影(2012等)制作中. Bu ...
- python学习(5)写一个二分算法的程序
把之前学习的做一个小结.之前看二分查找法,只能是似而非地看懂大概.现在用这么多天的知识积累已经可以自己写了. 而且在算法书的基础上,把需要找的数字做一个人机互动操作. 另外,初步接触到了 __name ...
- C标准库与嵌入式
stddef.h,其中包括size_t,sizeof函数返回值,不同平台的大小不一致 Size and pointer difference types[edit] The C language sp ...
- Java自学-多线程 同步synchronized
Java 多线程同步 synchronized 多线程的同步问题指的是多个线程同时修改一个数据的时候,可能导致的问题 多线程的问题,又叫Concurrency 问题 步骤 1 : 演示同步问题 假设盖 ...
- java设计模式 - 单例模式(干货)
深度讲解23种设计模式,力争每种设计模式都刨析到底.废话不多说,开始第一种设计模式 - 单例. 作者已知的单例模式有8种写法,而每一种写法,都有自身的优缺点. 1,使用频率最高的写法,废话不多说,直接 ...
- SQL Server等待事件—PAGEIOLATCH_EX
什么是PAGEIOLATCH_EX等待事件? 下面我们将对PAGEIOLATCH_EX等待事件的相关资料做一个简单的归纳.整理.关于PAGEIOLATCH_EX,官方文档的简单介绍如下: PAGEIO ...
- 最新咕咆+鲁班+图灵+享学+蚂蚁+硅谷+源码 Java架构师资料《Java架构师VIP课程》
最新的Java架构师完整资料,完整视频+源码+文档. 每一套都是一百多个G的资料,无密. JAVA架构师全套课程 咕泡学院互联网架构师第一期 咕泡学院互联网架构师第二期 咕泡学院互联网架构师第三期 博 ...
- Mac下搭建selenium环境
1,安装selenium 打开terminal,使用以下命令安装selenium: pip install -U selenium 2,下载chromedriver,并放在python的安装根目录 ...