Performance Insights是什么

阿里云RDS Performance Insights是RDS CloudDBA产品一项专注于用户数据库实例性能调优、负载监控和关联分析的利器,以简单直观的方式帮助用户迅速评估数据库负载,资源等待的源头和对应SQL查询语句,以此来指导用户在何时、何处、采取何种行动进行数据性能优化。

几个名词解释

Performance Insights:中文翻译过来叫性能洞察。 
Active Session (AS):RDS数据库系统中,活跃的会话数量。 
Average Active Session (AAS):一段时间内,RDS数据库中平均活跃会话数量。 
Max Vcores:RDS数据库实例最大可以使用到的CPU Cores数量。

AAS和MaxVcores来量化系统瓶颈

在文章开始,我们希望能够把一个非常重要的问题解释清楚:为什么可以使用AAS (平均活跃会话数)与RDS数据库实例MaxVcores量化对比来作为系统瓶颈的判断依据?我们的理由是:

首先,RDS数据库系统中,我们认为最为重要的资源是CPU资源,因为其他所有资源都需要CPU来调度。

其次,CPU的并发处理能力,与CPU Cores的数量相关。假设在相当小的一个时间切片上,CPU对活跃会话(AS)处理能力瓶颈就是CPU Cores数量。即:CPU最多同时能够处理与Cores数量均等的活跃会话数。

因此,我们可以用RDS数据库系统中,平均活跃会话(AAS)数与MaxVcores数的量化对比,做为判定系统是否存在瓶颈的重要依据。

Performance Insights能做什么

阿里云RDS Performance Insights能够帮助我们的用户快速方便、直接了当的发现数据库实例负载,以及导致性能问题的SQL语句。目前Performance Insights页面以三个方面承载我们的产品思路:

关键性能指标趋势图:关键资源利用率变化趋势图。

实时AAS变化趋势图:数据库实例中平均活跃会话(Average Active Sessions)实时变化趋势。
多维负载信息:展示多维度实例负载信息。
关键资源利用率趋势图

阿里云RDS Performance Insights关键性能指标的趋势图,可以从宏观的角度帮助客户发现实例负载的来源,比如:到底是CPU资源吃紧,IOPS过高?还是网络开销过大,又或是活跃连接数打满?

实时AAS变化趋势图

从关键资源利用率趋势图部分,我们已经大致清楚了实例负载的来源。接下来,带着这个问题,我们去看看目前实例中活跃会话的资源等待情况。那么,此时我们可以来到页面的第二个部分:实时AAS变化趋势图。

从Performance Insights中的实时AAS变化趋势图中,我们可以非常清晰的发现RDS实例中的资源等待情况。比如上图,我们可以分析出以下重要信息:

时间10:25 - 10:57之间,平均活跃会话远远大于实例CPU Cores数量24(几个点低于CPU Cores),说明数据库已经面临比较大的系统瓶颈。
从AAS变化趋势图来看,几乎是在等待蓝色标示的资源,即CPU资源。

由此可见,我们使用Performance Insights中的实时AAS变化趋势图,可以非常清晰简单,直接了当的找到用户RDS实例负载来源,资源等待于何时、何处,以及变化规律。

多维度负载详情

通Performance Insights中的实时AAS变化趋势图,掌握了实例负载来源,资源等待及变化规律,接下来用户理所应当最关心的一个问题便是:到底导致这些实例负载的具体查询语句是什么?哪个用户导致的?哪个连接主机客户端?哪个应用数据库?这一系列的问题我们可以使用多维负载信息部分来解答。

从以上截图的下半部分,我们可以方便的找出与AAS变化趋势关联的负载对应的SQL查询语句,以及每个语句对AAS的贡献的对比情况。当然,您也可以根据自己的需要切换为Waits,Users,Hosts,Commands,Databases和Status,分别表示资源等待,用户,客户端主机,命令类型,数据库,进程状态等维度查看。

Performance Insights架构

了解阿里云RDS Performance Insights能够做什么以后,让我们来看Performance Insights的设计架构图,简要概括为五个字:四层两链路。

四层架构

RDS Performance Insights四层架构从上往下,依次为:

应用层:前端用户可见,承载着我们产品的思路和逻辑,是终端用户可见的产品呈现。 
服务层:各系统API协调工作,为应用层提供应用数据服务,我们产品主要的业务逻辑处理层。 
数据层:数据实时处理平台,统计汇总,数据扁平化,实时计算,最终持久化到元数据库中,为服务层提供数据。 
采集层:从RDS实例中,采集有价值的基础数据,为数据层输入数据。

两条链路

从数据链路来看Performance Insights,有两条链路:

访问链路:数据至上而下请求访问,至下而上的数据返回。 
采集链路:数据从生产到消费,从统计汇总到最终落库整个生命过程。

典型案例

以下两个典型案例,来看看Performance Insights如何一目了然,一针见血的帮助我们诊断分析数据库系统瓶颈,资源等待和SQL查询语句。

为什么CPU 100%了 
XXX时间点SQL查询变慢了

为什么CPU 100%了?

在我们多年的专家服务过程中, 遇到最多的用户问题便是“为什么我的CPU 100%了”,来看看Performance Insights是如何庖丁解牛这个问题。

Performance Insights截图

以下是该RDS实例,Performance Insights页面截图。

分析

我们从Performance Insights页面截图分析出以下几个问题:

从资源利用率中CPU使用率和活跃会话数量来看:大概在 09:59 - 10:05,均有大幅上升。CPU使用率达到了100%,活跃会话(Active Sessions)达到了400+;

AAS变化趋势中发现,这段时间内,系统瓶颈主要集中在CPU和Lock两资源的等待,总的Active Sessions数远远超过CPU Cores(实例的CPU Cores为16),存在严重的系统瓶颈。

SQL语句详情部分:非常清晰的看到排在第一位的SQL查询语句是等待CPU资源,达到了96个活跃会话;第二位是Lock资源等待,达到了79个会话,可以点击SQL语句,查看详情。

XXX时间点SQL查询变慢了

另外,用户经常遇到的一个问题是“为什么我的SQL查询语句突然变慢了”?

Performance Insights截图

某RDS实例用户反馈在16:05左右,原本执行很快的Update语句,突然变得很慢,16:08左右恢复正常,以下是该RDS实例Performance Insights页面截图。

分析

从Performance Insights截图,我们可以分析出:

从AAS变化趋势图中,发现大约从16:05:50秒开始,系统出现了大量等待Lock资源的活跃会话(图中橙色颜色区域),达到了33个,远超CPU Cores数。

从截图最下部分SQL查询中,发现等待Lock资源的SQL语句(第一条,橙色标示),恰巧是用户抱怨变慢的Update操作语句。于是我们可以很快断定,这个Update变慢的原因是资源被锁住,导致等待锁资源释放时间过长,拉长了执行时间,即Update语句变慢了。
从AAS变化趋势图中,发现大约在16:07:20左右,等待锁资源的活跃进程消失了,Update语句性能恢复正常,说明锁资源已经释放。

以上,我们从两个特定的用户案例可以看到Performance Insights可以简单直观,轻松愉悦的帮助用户诊断问题,关联分析系统瓶颈,资源等待和SQL查询,取得了非常好的效果。

Performance Insights的未来

伴随阿里云RDS Performance Insights第一期发布,我们已经可以帮助用户快速发现RDS实例性能问题,以及导致性能问题的具体SQL查询。但是,这远远不够,我们还需要更深入的帮助我们的客户自动化、智能化解决问题。

从“是什么”到“为什么”

当前,用户通过阿里云RDS Performance Insights找到了导致性能问题的具体查询SQL语句后,接下来很自然的一个问题是,为什么这个查询语句会导致性能问题?是缺失必要的索引?统计信息数据倾斜?查询数据类型转换?Non-SARG查询等等?接下来,我们需要深入探索为什么SQL会导致性能问题。

从“为什么”到“怎么办”

当用户知道了SQL语句为什么有性能问题以后,接下来的问题便是:我该怎么做才能解决性能问题?我们需要明确告诉用户怎么办就能够解决性能问题。

从“怎么办”到“自动办”

随着用户能够解决SQL语句性能问题以后,用户接下来最为迫切的需求便是:阿里云能否帮我们预先发现、智能化、自动化处理解决这些类似的问题?

以上,便是RDS Performance Insights的产品脉络,从是什么到为什么;从为什么到怎么办;从怎么办到自动办,层层递进,步步为营,一步一步创造客户越来越高的诊断优化需求。

最后总结

阿里云RDS Performance Insights是数据库实例性能调优、负载监控、关联分析的必备利器,它可以帮助用户决策从何处下手,何时采取行动,采取何种行动以及智能化自动解决问题根源。我们有能力有信心可以帮助我们的客户更好的上好阿里云,用好阿里云。

原文链接
本文为云栖社区原创内容,未经允许不得转载。

一目了然 | 数据库实例性能调优利器:Performance Insights的更多相关文章

  1. 数据库实例性能调优利器:Performance Insights

    Performance Insights是什么 阿里云RDS Performance Insights是RDS CloudDBA产品一项专注于用户数据库实例性能调优.负载监控和关联分析的利器,以简单直 ...

  2. 飘逸的python - 性能调优利器profile及其意义

    VIM 的作者Bram Moolenaar在一篇叫高效文本编辑器的7个习惯的ppt中有这么一段话. Three basic steps 1.    Detect inefficiency 2.    ...

  3. OCM_第十五天课程:Section6 —》数据库性能调优 _SQL 访问建议 /SQL 性能分析器/配置基线模板/SQL 执行计划管理/实例限制

    注:本文为原著(其内容来自 腾科教育培训课堂).阅读本文注意事项如下: 1:所有文章的转载请标注本文出处. 2:本文非本人不得用于商业用途.违者将承当相应法律责任. 3:该系列文章目录列表: 一:&l ...

  4. MySQL性能调优与架构设计——第8章 MySQL数据库Query的优化

    第8章 MySQL数据库Query的优化 前言: 在之前“影响 MySQL 应用系统性能的相关因素”一章中我们就已经分析过了Query语句对数据库性能的影响非常大,所以本章将专门针对 MySQL 的 ...

  5. .NET性能调优之一:ANTS Performance Profiler的使用

    .NET性能调优系列文章 系列文章索引 .NET性能调优之一:ANTS Performance Profiler的使用 .NET性能调优之二:使用Visual Studio进行代码度量 .NET性能调 ...

  6. OCM_第十四天课程:Section6 —》数据库性能调优_各类索引 /调优工具使用/SQL 优化建议

    注:本文为原著(其内容来自 腾科教育培训课堂).阅读本文注意事项如下: 1:所有文章的转载请标注本文出处. 2:本文非本人不得用于商业用途.违者将承当相应法律责任. 3:该系列文章目录列表: 一:&l ...

  7. OCM_第十三天课程:Section6 —》数据库性能调优 _结果缓存 /多列数据信息采集统计/采集数据信息保持游标有效

    注:本文为原著(其内容来自 腾科教育培训课堂).阅读本文注意事项如下: 1:所有文章的转载请标注本文出处. 2:本文非本人不得用于商业用途.违者将承当相应法律责任. 3:该系列文章目录列表: 一:&l ...

  8. OCM_第十二天课程:Section6 —》数据库性能调优_ 资源管理器/执行计划

    注:本文为原著(其内容来自 腾科教育培训课堂).阅读本文注意事项如下: 1:所有文章的转载请标注本文出处. 2:本文非本人不得用于商业用途.违者将承当相应法律责任. 3:该系列文章目录列表: 一:&l ...

  9. MySQL性能调优与架构设计——第9章 MySQL数据库Schema设计的性能优化

    第9章 MySQL数据库Schema设计的性能优化 前言: 很多人都认为性能是在通过编写代码(程序代码或者是数据库代码)的过程中优化出来的,其实这是一个非常大的误区.真正影响性能最大的部分是在设计中就 ...

随机推荐

  1. python系列之(3)爬取豆瓣图书数据

    上次介绍了beautifulsoup的使用,那就来进行运用下吧.本篇将主要介绍通过爬取豆瓣图书的信息,存储到sqlite数据库进行分析. 1.sqlite SQLite是一个进程内的库,实现了自给自足 ...

  2. 猜年龄v2.0

    ''' 用户登录,只有三次机会 给定年龄,用户可以猜三次年龄 年龄猜对,让用户选择两次奖励,输入无效字符,让其选择要不要礼物 用户选择两次奖励后可以退出,选择第一次后提示还有一次 ''' #基本信息定 ...

  3. hdu1848 sg打表

    果然是神器. #include<stdio.h> #include<string.h> #define maxn 1002 ],sg[maxn],hash[maxn]; voi ...

  4. 使用 git 来管理 PCB 版本

    使用 git 来管理 PCB 版本 在传统的 PCB 版本管理是复制一份,再重命名,写上日期,写上修改日志. 自从接触了 git 后,发现 git 的版本管理完全可以胜任,且可以做的更好. 原来使用商 ...

  5. 2019-8-31-cmd-如何跨驱动器移动文件夹

    title author date CreateTime categories cmd 如何跨驱动器移动文件夹 lindexi 2019-08-31 16:55:58 +0800 2019-02-27 ...

  6. Java练习 SDUT-1255_小明A+B

    小明A+B Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 小明今年3岁了, 现在他已经能够认识100以内的非负整数, ...

  7. QT 开发ros gui过程中遇到:error: catkin_package() include dir 'include' does not exist relative to '/home/jun/catkin_ws/src/qt_ros_test' /opt/ros/kinetic/share/catkin/cmake/catkin_package.cmake:102 (_catkin_p

    这是因为在ros工作空间的包中没有include文件夹造成的,所以在该路径下创建include的文件夹,问题就解决了.

  8. Python基础:16面向对象概述

    1:在版本2.2 中,Python社区最终统一了类型(type)和类(class),新式类具备更多高级的OOP特性,扮演了一个经典类(旧式类)超集的角色,后者是Python 诞生时所创造的类对象. 2 ...

  9. 12 将类处理为excel,再将excel处理为类(界限计划3)

    中间使用map作为中间处理 将类处理为excel: 1.读取类转为map //读取btl,转为map public static Map getBtlMap(String rule, BTLDAO b ...

  10. django之请求方法

    Http1.0定义了三种请求方法:GET,POST和HEAD方法 Http1.1新增了五种请求方式:OPTIONS,PUT,DELETE,TRACE和CONNECT方法 ----get        ...