HDU - 5015 233 Matrix (矩阵快速幂)
InputThere are multiple test cases. Please process till EOF.
For each case, the first line contains two postive integers n,m(n ≤ 10,m ≤ 10 9). The second line contains n integers, a 1,0,a 2,0,...,a n,0(0 ≤ a i,0 < 2 31).OutputFor each case, output a n,m mod 10000007.Sample Input
1 1
1
2 2
0 0
3 7
23 47 16
Sample Output
234
2799
72937 题意:
a[i][j]=a[i-1][j]+a[i][j-1];
a[0][1]=233,a[0][2]=2333,a[0][3]=23333,......
a[1][0]到a[n][0]由输入给出,求a[n][m];
思路:
本来打算直接用a[i][j]=a[i-1][j]+a[i][j-1]作为公式进行推导,发现并不可行。
实际上是直接对每一列进行操作。
写完这题,大概矩阵快速幂才是真的入门。
#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime>
#define fuck(x) cout<<#x<<" = "<<x<<endl;
#define debug(a,i) cout<<#a<<"["<<i<<"] = "<<a[i]<<endl;
#define ls (t<<1)
#define rs ((t<<1)+1)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = ;
const int maxm = ;
const int inf = 2.1e9;
const ll Inf = ;
const int mod = ;
const double eps = 1e-;
const double pi = acos(-); ll num[]; struct Matrix{
ll mp[][];
};
Matrix mul(Matrix a,Matrix b,int n){
Matrix ans;
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
ans.mp[i][j]=;
for(int k=;k<=n;k++){
ans.mp[i][j]+=a.mp[i][k]*b.mp[k][j];
}
ans.mp[i][j]%=mod;
}
}
return ans;
} Matrix q_pow(Matrix a,int b,int n){
Matrix ans;
memset(ans.mp,,sizeof(ans.mp));
for(int i=;i<=n;i++){
ans.mp[i][i]=;
}
while (b){
if(b&){
ans=mul(ans,a,n);
}
b>>=;
a=mul(a,a,n);
}
return ans;
} int main()
{
// ios::sync_with_stdio(false);
// freopen("in.txt","r",stdin); int n,m;
while(scanf("%d%d",&n,&m)!=EOF){
for(int i=;i<=n;i++){
scanf("%lld",&num[i]);
}
Matrix exa;
memset(exa.mp,,sizeof(exa.mp));
int t=;
exa.mp[n+][n+]=;
for(int i=;i<=n+;i++){
exa.mp[i][]=;exa.mp[i][n+]=;
for(int j=;j<=t;j++){
exa.mp[i][j+]=;
}
t++;
}
exa=q_pow(exa,m,n+);
ll ans=;
num[]=;num[n+]=;
for(int i=;i<=n+;i++){
ans+=exa.mp[n+][i]*num[i-];
ans%=mod;
}
printf("%lld\n",ans); } return ;
}
HDU - 5015 233 Matrix (矩阵快速幂)的更多相关文章
- HDU 5015 233 Matrix --矩阵快速幂
题意:给出矩阵的第0行(233,2333,23333,...)和第0列a1,a2,...an(n<=10,m<=10^9),给出式子: A[i][j] = A[i-1][j] + A[i] ...
- 233 Matrix 矩阵快速幂
In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...
- 233 Matrix(矩阵快速幂+思维)
In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...
- HDU5015 233 Matrix —— 矩阵快速幂
题目链接:https://vjudge.net/problem/HDU-5015 233 Matrix Time Limit: 10000/5000 MS (Java/Others) Memor ...
- HDU.1575 Tr A ( 矩阵快速幂)
HDU.1575 Tr A ( 矩阵快速幂) 点我挑战题目 题意分析 直接求矩阵A^K的结果,然后计算正对角线,即左上到右下对角线的和,结果模9973后输出即可. 由于此题矩阵直接给出的,题目比较裸. ...
- HDU5015 233 Matrix(矩阵高速幂)
HDU5015 233 Matrix(矩阵高速幂) 题目链接 题目大意: 给出n∗m矩阵,给出第一行a01, a02, a03 ...a0m (各自是233, 2333, 23333...), 再给定 ...
- hdu 3117 Fibonacci Numbers 矩阵快速幂+公式
斐波那契数列后四位可以用快速幂取模(模10000)算出.前四位要用公式推 HDU 3117 Fibonacci Numbers(矩阵快速幂+公式) f(n)=(((1+√5)/2)^n+((1-√5) ...
- HDU 5015 233 Matrix(网络赛1009) 矩阵快速幂
先贴四份矩阵快速幂的模板:http://www.cnblogs.com/shangyu/p/3620803.html http://www.cppblog.com/acronix/archive/20 ...
- HDU 2842 (递推+矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个 ...
随机推荐
- vue @click.native
1,给vue组件绑定事件时候,必须加上native ,不然不会生效(监听根元素的原生事件,使用 .native 修饰符) 2,等同于在自组件中: 子组件内部处理click事件然后向外发送click事件 ...
- JavaScript--开关思想
就是男默女泪的立flag! <!DOCTYPE html> <html lang="en"> <head> <meta charset=& ...
- Python3 写的远程批量修改文件内容的脚本
一.说明: 1.利用Python的paramiko模块,调用远程的shell命令去修改相应文件. 2.有一个专用配置文件,列出服务器清单. 3.Python循环读取配置文件的服务器IP去连接它,并执行 ...
- 【算法】BSGS算法
BSGS算法 BSGS算法用于求解关于x的模方程\(A^x\equiv B\mod P\)(P为质数),相当于求模意义下的对数. 思想: 由费马小定理,\(A^{p-1}\equiv 1\mod P\ ...
- 关于使用JavaMail发送邮件抛出java.lang.NoSuchMethodError: com.sun.mail.util.TraceInputStream.<init>(Ljava异常的解决方法
我们在使用JavaMail时有可能会如下异常: Exception in thread "main" java.lang.NoSuchMethodError: com.sun.ma ...
- SVN过滤设置 标签: svn 2015-07-29 17:39 953人阅读 评论(35) 收藏
为了方便管理我们的系统版本,很多人会用到SVN,开发中我们经常用到SVN插件, 但是对于某些文件的缓存来说, 我们只要有操作缓存便会保存一次, 每次提交很是麻烦, 可能有的文件或者文件夹我们并不想提交 ...
- Java练习 SDUT-1194_余弦
C语言实验--余弦 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 输入n的值,计算cos(x). Input 输入数据 ...
- 坚守安全第一准则!阿里云接连通过等保2.0测评、ISO国际认证
斩获新资质 数字时代,数据的安全对于互联网用户来说显得尤为重要.阿里云更是一直坚持“安全第一准则”,致力于为客户的数据安全搭建更健全机制. 2019年5月,阿里云“电子政务云平台系统”正式通过网络安全 ...
- OpenStack组件系列☞Keystone搭建
一:版本信息 官网:http://docs.openstack.org/newton/install-guide-rdo/keystone.html 二:部署keystone 官网文档:http:// ...
- HDU 4417 Super Mario 主席树查询区间小于某个值的个数
#include<iostream> #include<string.h> #include<algorithm> #include<stdio.h> ...