【新人赛】阿里云恶意程序检测 -- 实践记录11.3 - n-gram模型调参
主要工作
本周主要是跑了下n-gram模型,并调了下参数。大概看了几篇论文,有几个处理方法不错,准备下周代码实现一下。
xgboost参数设置为:
param = {'max_depth': 6, 'eta': 0.1, 'eval_metric': 'mlogloss', 'silent': 1, 'objective': 'multi:softprob',
'num_class': 8, 'subsample': 0.5, 'colsample_bytree': 0.85}
n-gram模型,CountVectorizer
为了训练速度考虑,采用两折校验,对ngram_range参数,start=end,即只用某元:
| ngram | train-mean | val-mean |
|---|---|---|
| 1 | 0.113553 | 0.376238 |
| 2 | 0.086720 | 0.331593 |
| 3 | 0.085156 | 0.338862 |
| 4 | 0.102556 | 0.347408 |
| 5 | 0.090270 | 0.366249 |
import matplotlib.pyplot as plt
import numpy as np
train_mean = [0.113553, 0.086720, 0.085156, 0.102556, 0.090270]
val_mean = [0.376238, 0.331593, 0.338862, 0.347408, 0.366249]
# 绘制对比柱状图
plt.bar(x=range(1, 6), height=train_mean, label="train mean", alpha=0.8, width=bar_width)
plt.legend()
plt.xlabel("ngram_range(start=end)")
plt.ylabel("mean")
plt.title('result')
plt.show()
plt.bar(x=np.arange(1, 6), height=val_mean, label="val mean", alpha=0.8, width=bar_width)
plt.legend()
plt.xlabel("ngram_range(start=end)")
plt.ylabel("mean")
plt.title('result')
plt.show()
绘图可得:

可以看到,二元、三元关系的拟合效果比较好。
所以在api序列中,依赖关系主要以短链为主,长链为辅,同时单个api也有一些价值。
而后,同样是2折校验,对start != end的情形做了一下训练。

可以看到,start=1得到的结果比start=2得到的效果要好一些,
同时当start=1, end从2至6,拟合效果都有提升,当end=7之后又会变差。
所以n-gram模型,二元、三元的拟合效果比较好,加上一元,四元,五元,六元之后,效果都有提升,这几元都很有用。
此外,将2折改为5折,计算开销增大,但结果会更好一些。

将5折得到的这几个结果,提交到线上,测试结果如下:

10折提交,结果如下:

在同学的基础上优化:
使用参数ngram_range=(1, 3),xgboost中subsample=0.8,

【新人赛】阿里云恶意程序检测 -- 实践记录11.3 - n-gram模型调参的更多相关文章
- 【新人赛】阿里云恶意程序检测 -- 实践记录11.10 - XGBoost学习 / 代码阅读、调参经验总结
XGBoost学习: 集成学习将多个弱学习器结合起来,优势互补,可以达到强学习器的效果.要想得到最好的集成效果,这些弱学习器应当"好而不同". 根据个体学习器的生成方法,集成学习方 ...
- 【新人赛】阿里云恶意程序检测 -- 实践记录 11.24 - word2vec模型 + xgboost
使用word2vec训练词向量 使用word2vec无监督学习训练词向量,输入的是训练数据和测试数据,输出的是每个词的词向量,总共三百个词左右. 求和:然后再将每行数据中的每个词的词向量加和,得到每行 ...
- 【新人赛】阿里云恶意程序检测 -- 实践记录10.13 - Google Colab连接 / 数据简单查看 / 模型训练
1. 比赛介绍 比赛地址:阿里云恶意程序检测新人赛 这个比赛和已结束的第三届阿里云安全算法挑战赛赛题类似,是一个开放的长期赛. 2. 前期准备 因为训练数据量比较大,本地CPU跑不起来,所以决定用Go ...
- 【新人赛】阿里云恶意程序检测 -- 实践记录10.20 - 数据预处理 / 训练数据分析 / TF-IDF模型调参
Colab连接与数据预处理 Colab连接方法见上一篇博客 数据预处理: import pandas as pd import pickle import numpy as np # 训练数据和测试数 ...
- 【新人赛】阿里云恶意程序检测 -- 实践记录10.27 - TF-IDF模型调参 / 数据可视化
TF-IDF模型调参 1. 调TfidfVectorizer的参数 ngram_range, min_df, max_df: 上一篇博客调了ngram_range这个参数,得出了ngram_range ...
- 阿里云小程序云应用环境DIY,延长3倍免费期
阿里云清明节前刚刚推出了小程序云应用扶持计划一期活动 (活动链接见文章底部).假期研究了下以后,发觉不太给力.基本上就是给了2个月的免费测试环境,和平均2个月的基础版生产环境.而如果选用标准版生产环境 ...
- Android手机安全软件的恶意程序检测靠谱吗--LBE安全大师、腾讯手机管家、360手机卫士恶意软件检测方法研究
转载请注明出处,谢谢. Android系统开放,各大论坛活跃,应用程序分发渠道广泛,这也就为恶意软件的传播提供了良好的环境.好在手机上安装了安全软件,是否能有效的检测出恶意软件呢?下边针对LBE安全大 ...
- 阿里云centos安装docker-engine实践
近日在阿里云ECS服务器(centos系统)中安装docker,参考官方指南 https://docs.docker.com/engine/installation/linux/centos/ 大概 ...
- 阿里云负载均衡配置https记录
配置前端协议是443,后端是80 问题1记录: 例如访问https://www.xxx.com,在后端服务器上面获取是http还是https请求协议实际上是http: 因为我们先请求负载均衡,负载均衡 ...
随机推荐
- idea个人配置记录
idea.properties # Use ${idea.home.path} macro to specify location relative to IDE installation home. ...
- JSP&Servlet学习笔记----第5章
Servlet进阶API 每个Servlet都必须由web容器读取Servlet设置信息(标注或者web.xml).初始化. 对于每个Servlet的设置信息,web容器会为其生成一个ServletC ...
- ELK:日志收集分析平台
简介 ELK是一个日志收集分析的平台,它能收集海量的日志,并将其根据字段切割.一来方便供开发查看日志,定位问题:二来可以根据日志进行统计分析,通过其强大的呈现能力,挖掘数据的潜在价值,分析重要指标的趋 ...
- Spring源码阅读笔记01:源码阅读环境准备
1. 写在前面 对于做Java开发的同学来说,Spring就像是一条绕不过去的路,但是大多数也只是停留在对Spring的简单使用层面上,对于其背后的原理所知不多也不愿深究,关于这个问题,我在平时的生活 ...
- 制作openstack的windows server 2012r2镜像
1. 基础环境安装 yum groupinstall Virtualization "Virtualization Client" yum install libvirt 2. 启 ...
- jsessionid與cookie關係的理解
本地測試地址為http://localhost/TEST/login.jsf 當瀏覽器打開cookie時,瀏覽器第一次與服務器建立連接,會創建一個session,並生成一個id即jsessionid, ...
- 珠峰-webpack
##### webpack的优势.可以做哪里事情. ##### npx的运行原理 https://zhuanlan.zhihu.com/p/27840803 #### webpack的插件 html ...
- oracle数据库的启动、关闭、连接
登陆数据库 方法一: $ sqlplus / as sysdba [oracle@dev /]$ sqlplus / as sysdba SQL*Plus: Release Production on ...
- session和cookie的最深刻理解
先说session 对SESSION的争论好象一直没有停止过,不过幺麽能理解SESSION的人应该占90以上.但还是讲讲,别嫌老~ 有一些人赞成用SESSION,有一些人不赞成.但这个问题到底要怎么说 ...
- Gong服务实现平滑重启分析
平滑重启是指能让我们的程序在重启的过程不中断服务,新老进程无缝衔接,实现零停机时间(Zero-Downtime)部署: 平滑重启是建立在优雅退出的基础之上的,之前一篇文章介绍了相关实现:Golang中 ...