I Proofs
1 What is a Proof?
2 The Well Ordering Principle
3 Logical Formulas
4 Mathematical Data Types
5 Induction
6 State Machines
7 Recursive Data Types
8 Infinite Sets
II Structures
9 Number Theory
10 Directed graphs & Partial Orders
11 Communication Networks
12 Simple Graphs
13 Planar Graphs
III Counting
14 Sums and Asymptotics
15 Cardinality Rules
16 Generating Functions
IV Probability
17 Events and Probability Spaces
18 Conditional Probability
19 Random Variables
20 Deviation from the Mean
21 Random Walks
V Recurrences
22 Recurrences

I Proofs
Introduction
0.1 References

1 What is a Proof?

1.1 Propositions
1.2 Predicates
1.3 The Axiomatic Method
1.4 Our Axioms
1.5 Proving an Implication
1.6 Proving an “If and Only If”
1.7 Proof by Cases
1.8 Proof by Contradiction
1.9 Good Proofs in Practice
1.10 References

2 The Well Ordering Principle

2.1 Well Ordering Proofs
2.2 Template for Well Ordering Proofs
2.3 Factoring into Primes
2.4 Well Ordered Sets

3 Logical Formulas

3.1 Propositions from Propositions
3.2 Propositional Logic in Computer Programs
3.3 Equivalence and Validity
3.4 The Algebra of Propositions
3.5 The SAT Problem
3.6 Predicate Formulas
3.7 References

4 Mathematical Data Types

4.1 Sets
4.2 Sequences
4.3 Functions
4.4 Binary Relations
4.5 Finite Cardinality

5 Induction

5.1 Ordinary Induction
5.2 Strong Induction
5.3 Strong Induction vs. Induction vs. Well Ordering

6 State Machines

6.1 States and Transitions
6.2 The Invariant Principle
6.3 Partial Correctness & Termination
6.4 The Stable Marriage Problem

7 Recursive Data Types

7.1 Recursive Definitions and Structural Induction
7.2 Strings of Matched Brackets
7.3 Recursive Functions on Nonnegative Integers
7.4 Arithmetic Expressions
7.5 Induction in Computer Science

8 Infinite Sets

8.1 Infinite Cardinality
8.2 The Halting Problem
8.3 The Logic of Sets
8.4 Does All This Really Work?
II Structures
Introduction

9 Number Theory

9.1 Divisibility
9.2 The Greatest Common Divisor
9.3 Prime Mysteries
9.4 The Fundamental Theorem of Arithmetic
9.5 Alan Turing
9.6 Modular Arithmetic
9.7 Remainder Arithmetic
9.8 Turing’s Code (Version 2.0)
9.9 Multiplicative Inverses and Cancelling
9.10 Euler’s Theorem
9.11 RSA Public Key Encryption
9.12 What has SAT got to do with it?
9.13 References

10 Directed graphs & Partial Orders

10.1 Vertex Degrees
10.2 Walks and Paths
10.3 Adjacency Matrices
10.4 Walk Relations
10.5 Directed Acyclic Graphs & Scheduling
10.6 Partial Orders
10.7 Representing Partial Orders by Set Containment
10.8 Linear Orders
10.9 Product Orders
10.10 Equivalence Relations
10.11 Summary of Relational Properties

11 Communication Networks

11.1 Routing
11.2 Routing Measures
11.3 Network Designs

12 Simple Graphs

12.1 Vertex Adjacency and Degrees
12.2 Sexual Demographics in America
12.3 Some Common Graphs
12.4 Isomorphism
12.5 Bipartite Graphs & Matchings
12.6 Coloring
12.7 Simple Walks
12.8 Connectivity
12.9 Forests & Trees
12.10 References

13 Planar Graphs

13.1 Drawing Graphs in the Plane
13.2 Definitions of Planar Graphs
13.3 Euler’s Formula
13.4 Bounding the Number of Edges in a Planar Graph
13.5 Returning to K5 and K3;3
13.6 Coloring Planar Graphs
13.7 Classifying Polyhedra
13.8 Another Characterization for Planar Graphs
III Counting
Introduction

14 Sums and Asymptotics

14.1 The Value of an Annuity
14.2 Sums of Powers
14.3 Approximating Sums
14.4 Hanging Out Over the Edge
14.5 Products
14.6 Double Trouble
14.7 Asymptotic Notation

15 Cardinality Rules

15.1 Counting One Thing by Counting Another
15.2 Counting Sequences
15.3 The Generalized Product Rule
15.4 The Division Rule
15.5 Counting Subsets
15.6 Sequences with Repetitions
15.7 Counting Practice: Poker Hands
15.8 The Pigeonhole Principle
15.9 Inclusion-Exclusion
15.10 Combinatorial Proofs
15.11 References

16 Generating Functions

16.1 Infinite Series
16.2 Counting with Generating Functions
16.3 Partial Fractions
16.4 Solving Linear Recurrences
16.5 Formal Power Series
16.6 References
IV Probability
Introduction

17 Events and Probability Spaces

17.1 Let’s Make a Deal
17.2 The Four Step Method
17.3 Strange Dice
17.4 The Birthday Principle
17.5 Set Theory and Probability
17.6 References

18 Conditional Probability

18.1 Monty Hall Confusion
18.2 Definition and Notation
18.3 The Four-Step Method for Conditional Probability
18.4 Why Tree Diagrams Work
18.5 The Law of Total Probability
18.6 Simpson’s Paradox
18.7 Independence
18.8 Mutual Independence
18.9 Probability versus Confidence

19 Random Variables

19.1 Random Variable Examples
19.2 Independence
19.3 Distribution Functions
19.4 Great Expectations
19.5 Linearity of Expectation

20 Deviation from the Mean

20.1 Markov’s Theorem
20.2 Chebyshev’s Theorem
20.3 Properties of Variance
20.4 Estimation by Random Sampling
20.5 Confidence in an Estimation
20.6 Sums of Random Variables
20.7 Really Great Expectations

21 Random Walks

21.1 Gambler’s Ruin
21.2 Random Walks on Graphs
V Recurrences
Introduction

22 Recurrences

22.1 The Towers of Hanoi
22.2 Merge Sort
22.3 Linear Recurrences
22.4 Divide-and-Conquer Recurrences
22.5 A Feel for Recurrences

Mathematics for Computer Science (Eric Lehman / F Thomson Leighton / Albert R Meyer 著)的更多相关文章

  1. 6.042 Mathematics for Computer Science

    课程信息 6.042 Mathematics for Computer Science

  2. [转载] A set of top Computer Science blogs

    This started out as a list of top Computer Science blogs, but it more closely resembles a set: the o ...

  3. Discovering the Computer Science Behind Postgres Indexes

    This is the last in a series of Postgres posts that Pat Shaughnessy wrote based on his presentation ...

  4. Will Georgia Tech's $7K online M.S. in computer science program make the grade?

    https://newatlas.com/georgia-tech--graduate-computer-science-degree-mooc/28763/ Georgia Tech to offe ...

  5. Computer Science: the Big Picture

    1.课程PPTMIT OpenCourseWarehttp://ocw.mit.edu/courses/; Courses  Stanfordhttp://cs.stanford.edu/course ...

  6. What every computer science major should know 每一个计算机科学专业的毕业生都应该都知道的

    Given the expansive growth in the field, it's become challenging to discern what belongs in a modern ...

  7. Mathematics for Computer Graphics数学在计算机图形学中的应用 [转]

    最近严重感觉到数学知识的不足! http://bbs.gameres.com/showthread.asp?threadid=10509 [译]Mathematics for Computer Gra ...

  8. Computer Science Theory for the Information Age-4: 一些机器学习算法的简介

    一些机器学习算法的简介 本节开始,介绍<Computer Science Theory for the Information Age>一书中第六章(这里先暂时跳过第三章),主要涉及学习以 ...

  9. Computer Science Theory for the Information Age-1: 高维空间中的球体

    高维空间中的球体 注:此系列随笔是我在阅读图灵奖获得者John Hopcroft的最新书籍<Computer Science Theory for the Information Age> ...

随机推荐

  1. 函数func_get_args详解

    func_get_args ------获取一个函数的所有参数 function foo() { $numargs = func_num_args(); //参数数量 echo "参数个数是 ...

  2. ehcache 简介和基本api使用

    文章转载自: https://blog.csdn.net/zhouzhiwengang/article/details/59838105 1.ehcahce简介 在开发高并发量,高性能的网站应用系统时 ...

  3. ADC应用

    数模转换(ADC)的应用笔记 智能时代,数字信号已体现在我们生活的方方面面,A/D,D/A是重要的基础.智能手机触摸信号需要转换为数字信号才能分辨触摸位置.数字去抖:打电话或者麦克风需要将模拟声信号转 ...

  4. 『TensorFlow』批处理类

    『教程』Batch Normalization 层介绍 基础知识 下面有莫凡的对于批处理的解释: fc_mean,fc_var = tf.nn.moments( Wx_plus_b, axes=[0] ...

  5. Maven入门介绍

    一.Maven的基本概念 1.1为什么需要Maven(作用) Ⅰ. 大家都知道使用Maven,那么我们为什么要要使用maven大家思考过吗?其实我也只是对maven入门阶段,刚刚接触的时候只是知道使用 ...

  6. MySQL 导出用户权限

    Version <= 5.6 #!/bin/bash #Function export user privileges source /etc/profile pwd=****** expgra ...

  7. 使用nginx作为webservice接口代理

    通常情况下,企业并不会直接开放系统接口给到外网,并且在企业内部同样有SOA或者ESB这样的接口统一管理的工具. 那么,大多数情况下,如果需要与外部系统,如云系统,或者其他企业的系统做接口时采取的方式如 ...

  8. Linux进程间通信机制

    Linux支持管道.信号.unix system V三种IPC(Inter-Process-Communication)机制.以下分别对三种机制加以简单介绍. 一.信号机制: 信号又称作软中断,用来通 ...

  9. LoadRunner遇到的错误及解决方法

    1.返回的报文太长: intweb_set_max_html_param_len(const char * length); intweb_set_max_html_param_len(") ...

  10. 跟随我在oracle学习php(2)

    在制作网页之前,先看一些常用标签的具体用法,上次我给出了常用标签表格,我们来一个一个看一看. 首先是<a>,他的第一个用法就是超链接,格式为<a href=”你想要跳转到的网页地址” ...