I Proofs
1 What is a Proof?
2 The Well Ordering Principle
3 Logical Formulas
4 Mathematical Data Types
5 Induction
6 State Machines
7 Recursive Data Types
8 Infinite Sets
II Structures
9 Number Theory
10 Directed graphs & Partial Orders
11 Communication Networks
12 Simple Graphs
13 Planar Graphs
III Counting
14 Sums and Asymptotics
15 Cardinality Rules
16 Generating Functions
IV Probability
17 Events and Probability Spaces
18 Conditional Probability
19 Random Variables
20 Deviation from the Mean
21 Random Walks
V Recurrences
22 Recurrences

I Proofs
Introduction
0.1 References

1 What is a Proof?

1.1 Propositions
1.2 Predicates
1.3 The Axiomatic Method
1.4 Our Axioms
1.5 Proving an Implication
1.6 Proving an “If and Only If”
1.7 Proof by Cases
1.8 Proof by Contradiction
1.9 Good Proofs in Practice
1.10 References

2 The Well Ordering Principle

2.1 Well Ordering Proofs
2.2 Template for Well Ordering Proofs
2.3 Factoring into Primes
2.4 Well Ordered Sets

3 Logical Formulas

3.1 Propositions from Propositions
3.2 Propositional Logic in Computer Programs
3.3 Equivalence and Validity
3.4 The Algebra of Propositions
3.5 The SAT Problem
3.6 Predicate Formulas
3.7 References

4 Mathematical Data Types

4.1 Sets
4.2 Sequences
4.3 Functions
4.4 Binary Relations
4.5 Finite Cardinality

5 Induction

5.1 Ordinary Induction
5.2 Strong Induction
5.3 Strong Induction vs. Induction vs. Well Ordering

6 State Machines

6.1 States and Transitions
6.2 The Invariant Principle
6.3 Partial Correctness & Termination
6.4 The Stable Marriage Problem

7 Recursive Data Types

7.1 Recursive Definitions and Structural Induction
7.2 Strings of Matched Brackets
7.3 Recursive Functions on Nonnegative Integers
7.4 Arithmetic Expressions
7.5 Induction in Computer Science

8 Infinite Sets

8.1 Infinite Cardinality
8.2 The Halting Problem
8.3 The Logic of Sets
8.4 Does All This Really Work?
II Structures
Introduction

9 Number Theory

9.1 Divisibility
9.2 The Greatest Common Divisor
9.3 Prime Mysteries
9.4 The Fundamental Theorem of Arithmetic
9.5 Alan Turing
9.6 Modular Arithmetic
9.7 Remainder Arithmetic
9.8 Turing’s Code (Version 2.0)
9.9 Multiplicative Inverses and Cancelling
9.10 Euler’s Theorem
9.11 RSA Public Key Encryption
9.12 What has SAT got to do with it?
9.13 References

10 Directed graphs & Partial Orders

10.1 Vertex Degrees
10.2 Walks and Paths
10.3 Adjacency Matrices
10.4 Walk Relations
10.5 Directed Acyclic Graphs & Scheduling
10.6 Partial Orders
10.7 Representing Partial Orders by Set Containment
10.8 Linear Orders
10.9 Product Orders
10.10 Equivalence Relations
10.11 Summary of Relational Properties

11 Communication Networks

11.1 Routing
11.2 Routing Measures
11.3 Network Designs

12 Simple Graphs

12.1 Vertex Adjacency and Degrees
12.2 Sexual Demographics in America
12.3 Some Common Graphs
12.4 Isomorphism
12.5 Bipartite Graphs & Matchings
12.6 Coloring
12.7 Simple Walks
12.8 Connectivity
12.9 Forests & Trees
12.10 References

13 Planar Graphs

13.1 Drawing Graphs in the Plane
13.2 Definitions of Planar Graphs
13.3 Euler’s Formula
13.4 Bounding the Number of Edges in a Planar Graph
13.5 Returning to K5 and K3;3
13.6 Coloring Planar Graphs
13.7 Classifying Polyhedra
13.8 Another Characterization for Planar Graphs
III Counting
Introduction

14 Sums and Asymptotics

14.1 The Value of an Annuity
14.2 Sums of Powers
14.3 Approximating Sums
14.4 Hanging Out Over the Edge
14.5 Products
14.6 Double Trouble
14.7 Asymptotic Notation

15 Cardinality Rules

15.1 Counting One Thing by Counting Another
15.2 Counting Sequences
15.3 The Generalized Product Rule
15.4 The Division Rule
15.5 Counting Subsets
15.6 Sequences with Repetitions
15.7 Counting Practice: Poker Hands
15.8 The Pigeonhole Principle
15.9 Inclusion-Exclusion
15.10 Combinatorial Proofs
15.11 References

16 Generating Functions

16.1 Infinite Series
16.2 Counting with Generating Functions
16.3 Partial Fractions
16.4 Solving Linear Recurrences
16.5 Formal Power Series
16.6 References
IV Probability
Introduction

17 Events and Probability Spaces

17.1 Let’s Make a Deal
17.2 The Four Step Method
17.3 Strange Dice
17.4 The Birthday Principle
17.5 Set Theory and Probability
17.6 References

18 Conditional Probability

18.1 Monty Hall Confusion
18.2 Definition and Notation
18.3 The Four-Step Method for Conditional Probability
18.4 Why Tree Diagrams Work
18.5 The Law of Total Probability
18.6 Simpson’s Paradox
18.7 Independence
18.8 Mutual Independence
18.9 Probability versus Confidence

19 Random Variables

19.1 Random Variable Examples
19.2 Independence
19.3 Distribution Functions
19.4 Great Expectations
19.5 Linearity of Expectation

20 Deviation from the Mean

20.1 Markov’s Theorem
20.2 Chebyshev’s Theorem
20.3 Properties of Variance
20.4 Estimation by Random Sampling
20.5 Confidence in an Estimation
20.6 Sums of Random Variables
20.7 Really Great Expectations

21 Random Walks

21.1 Gambler’s Ruin
21.2 Random Walks on Graphs
V Recurrences
Introduction

22 Recurrences

22.1 The Towers of Hanoi
22.2 Merge Sort
22.3 Linear Recurrences
22.4 Divide-and-Conquer Recurrences
22.5 A Feel for Recurrences

Mathematics for Computer Science (Eric Lehman / F Thomson Leighton / Albert R Meyer 著)的更多相关文章

  1. 6.042 Mathematics for Computer Science

    课程信息 6.042 Mathematics for Computer Science

  2. [转载] A set of top Computer Science blogs

    This started out as a list of top Computer Science blogs, but it more closely resembles a set: the o ...

  3. Discovering the Computer Science Behind Postgres Indexes

    This is the last in a series of Postgres posts that Pat Shaughnessy wrote based on his presentation ...

  4. Will Georgia Tech's $7K online M.S. in computer science program make the grade?

    https://newatlas.com/georgia-tech--graduate-computer-science-degree-mooc/28763/ Georgia Tech to offe ...

  5. Computer Science: the Big Picture

    1.课程PPTMIT OpenCourseWarehttp://ocw.mit.edu/courses/; Courses  Stanfordhttp://cs.stanford.edu/course ...

  6. What every computer science major should know 每一个计算机科学专业的毕业生都应该都知道的

    Given the expansive growth in the field, it's become challenging to discern what belongs in a modern ...

  7. Mathematics for Computer Graphics数学在计算机图形学中的应用 [转]

    最近严重感觉到数学知识的不足! http://bbs.gameres.com/showthread.asp?threadid=10509 [译]Mathematics for Computer Gra ...

  8. Computer Science Theory for the Information Age-4: 一些机器学习算法的简介

    一些机器学习算法的简介 本节开始,介绍<Computer Science Theory for the Information Age>一书中第六章(这里先暂时跳过第三章),主要涉及学习以 ...

  9. Computer Science Theory for the Information Age-1: 高维空间中的球体

    高维空间中的球体 注:此系列随笔是我在阅读图灵奖获得者John Hopcroft的最新书籍<Computer Science Theory for the Information Age> ...

随机推荐

  1. Nginx教程--02.Nginx虚拟主机的配置

    1.Nginx虚拟主机的配置 1.1 在conf目录下,使用命令 : vim nginx.conf 对上图解释: //全局区 worker _processes 1; //表示当前有1个工作的子进程, ...

  2. ubuntu中可以ping通IP地址但是ping不通域名的问题(www.baidu.com)

    治标不治本的办法:每次开机后执行sudo /etc/init.d/resolvconf restart就可以ping通. 治本方法见原博:https://blog.csdn.net/WFping518 ...

  3. 第 8 章 容器网络 - 062 - 如何使用 flannel host-gw backend?

    flannel host-gw backend flannel 支持多种 backend:(1)vxlan backend:(2)host-gw: 与 vxlan 不同,host-gw 不会封装数据包 ...

  4. [LeetCode]题1:two sum

      Example: Given nums = [2, 7, 11, 15], target = 9, Because nums[0] + nums[1] = 2 + 7 = 9, return [0 ...

  5. python学习:数据类型

    python有两种索引方式.一种从左至右,下标从0开始:一种从右至左,下标从-1开始. python有六种数据类型: 不可变数据(四个):Number(数字).String(字符串).Tuple(元组 ...

  6. 1022. Sum of Root To Leaf Binary Numbers从根到叶的二进制数之和

    网址:https://leetcode.com/problems/sum-of-root-to-leaf-binary-numbers/ 递归调用求和,同时注意%1000000007的位置 /** * ...

  7. 基于c#的windows基础设计(学习日记1)【关于异或运算】

    第一次接触异或运算,总体来说比哈希算法简单的多,无论是理解还是代码的难易度,唯一不好的是在固定了密钥之后,随机性就小了很多,所以安全性比起哈希算法还是有所差距. 原理在网站上很多都有所以就不再赘述了. ...

  8. Spring Security 案例实现和执行流程剖析

    Spring Security Spring Security 是 Spring 社区的一个顶级项目,也是 Spring Boot 官方推荐使用的安全框架.除了常规的认证(Authentication ...

  9. Spring MVC 复习笔记05

    1. 上传图片 1.1 springmvc中对多部件类型解析 在 页面form中提交enctype="multipart/form-data"的数据时,需要springmvc对mu ...

  10. tensorFlow(四)浅层神经网络

    tensorFlow见基础 实验 MNIST数据集介绍 MNIST是一个手写阿拉伯数字的数据集. 其中包含有60000个已经标注了的训练集,还有10000个用于测试的测试集. 本次实验的任务就是通过手 ...