Mathematics for Computer Science (Eric Lehman / F Thomson Leighton / Albert R Meyer 著)
I Proofs
1 What is a Proof?
2 The Well Ordering Principle
3 Logical Formulas
4 Mathematical Data Types
5 Induction
6 State Machines
7 Recursive Data Types
8 Infinite Sets
II Structures
9 Number Theory
10 Directed graphs & Partial Orders
11 Communication Networks
12 Simple Graphs
13 Planar Graphs
III Counting
14 Sums and Asymptotics
15 Cardinality Rules
16 Generating Functions
IV Probability
17 Events and Probability Spaces
18 Conditional Probability
19 Random Variables
20 Deviation from the Mean
21 Random Walks
V Recurrences
22 Recurrences
I Proofs
Introduction
0.1 References
1 What is a Proof?
1.1 Propositions
1.2 Predicates
1.3 The Axiomatic Method
1.4 Our Axioms
1.5 Proving an Implication
1.6 Proving an “If and Only If”
1.7 Proof by Cases
1.8 Proof by Contradiction
1.9 Good Proofs in Practice
1.10 References
2 The Well Ordering Principle
2.1 Well Ordering Proofs
2.2 Template for Well Ordering Proofs
2.3 Factoring into Primes
2.4 Well Ordered Sets
3 Logical Formulas
3.1 Propositions from Propositions
3.2 Propositional Logic in Computer Programs
3.3 Equivalence and Validity
3.4 The Algebra of Propositions
3.5 The SAT Problem
3.6 Predicate Formulas
3.7 References
4 Mathematical Data Types
4.1 Sets
4.2 Sequences
4.3 Functions
4.4 Binary Relations
4.5 Finite Cardinality
5 Induction
5.1 Ordinary Induction
5.2 Strong Induction
5.3 Strong Induction vs. Induction vs. Well Ordering
6 State Machines
6.1 States and Transitions
6.2 The Invariant Principle
6.3 Partial Correctness & Termination
6.4 The Stable Marriage Problem
7 Recursive Data Types
7.1 Recursive Definitions and Structural Induction
7.2 Strings of Matched Brackets
7.3 Recursive Functions on Nonnegative Integers
7.4 Arithmetic Expressions
7.5 Induction in Computer Science
8 Infinite Sets
8.1 Infinite Cardinality
8.2 The Halting Problem
8.3 The Logic of Sets
8.4 Does All This Really Work?
II Structures
Introduction
9 Number Theory
9.1 Divisibility
9.2 The Greatest Common Divisor
9.3 Prime Mysteries
9.4 The Fundamental Theorem of Arithmetic
9.5 Alan Turing
9.6 Modular Arithmetic
9.7 Remainder Arithmetic
9.8 Turing’s Code (Version 2.0)
9.9 Multiplicative Inverses and Cancelling
9.10 Euler’s Theorem
9.11 RSA Public Key Encryption
9.12 What has SAT got to do with it?
9.13 References
10 Directed graphs & Partial Orders
10.1 Vertex Degrees
10.2 Walks and Paths
10.3 Adjacency Matrices
10.4 Walk Relations
10.5 Directed Acyclic Graphs & Scheduling
10.6 Partial Orders
10.7 Representing Partial Orders by Set Containment
10.8 Linear Orders
10.9 Product Orders
10.10 Equivalence Relations
10.11 Summary of Relational Properties
11 Communication Networks
11.1 Routing
11.2 Routing Measures
11.3 Network Designs
12 Simple Graphs
12.1 Vertex Adjacency and Degrees
12.2 Sexual Demographics in America
12.3 Some Common Graphs
12.4 Isomorphism
12.5 Bipartite Graphs & Matchings
12.6 Coloring
12.7 Simple Walks
12.8 Connectivity
12.9 Forests & Trees
12.10 References
13 Planar Graphs
13.1 Drawing Graphs in the Plane
13.2 Definitions of Planar Graphs
13.3 Euler’s Formula
13.4 Bounding the Number of Edges in a Planar Graph
13.5 Returning to K5 and K3;3
13.6 Coloring Planar Graphs
13.7 Classifying Polyhedra
13.8 Another Characterization for Planar Graphs
III Counting
Introduction
14 Sums and Asymptotics
14.1 The Value of an Annuity
14.2 Sums of Powers
14.3 Approximating Sums
14.4 Hanging Out Over the Edge
14.5 Products
14.6 Double Trouble
14.7 Asymptotic Notation
15 Cardinality Rules
15.1 Counting One Thing by Counting Another
15.2 Counting Sequences
15.3 The Generalized Product Rule
15.4 The Division Rule
15.5 Counting Subsets
15.6 Sequences with Repetitions
15.7 Counting Practice: Poker Hands
15.8 The Pigeonhole Principle
15.9 Inclusion-Exclusion
15.10 Combinatorial Proofs
15.11 References
16 Generating Functions
16.1 Infinite Series
16.2 Counting with Generating Functions
16.3 Partial Fractions
16.4 Solving Linear Recurrences
16.5 Formal Power Series
16.6 References
IV Probability
Introduction
17 Events and Probability Spaces
17.1 Let’s Make a Deal
17.2 The Four Step Method
17.3 Strange Dice
17.4 The Birthday Principle
17.5 Set Theory and Probability
17.6 References
18 Conditional Probability
18.1 Monty Hall Confusion
18.2 Definition and Notation
18.3 The Four-Step Method for Conditional Probability
18.4 Why Tree Diagrams Work
18.5 The Law of Total Probability
18.6 Simpson’s Paradox
18.7 Independence
18.8 Mutual Independence
18.9 Probability versus Confidence
19 Random Variables
19.1 Random Variable Examples
19.2 Independence
19.3 Distribution Functions
19.4 Great Expectations
19.5 Linearity of Expectation
20 Deviation from the Mean
20.1 Markov’s Theorem
20.2 Chebyshev’s Theorem
20.3 Properties of Variance
20.4 Estimation by Random Sampling
20.5 Confidence in an Estimation
20.6 Sums of Random Variables
20.7 Really Great Expectations
21 Random Walks
21.1 Gambler’s Ruin
21.2 Random Walks on Graphs
V Recurrences
Introduction
22 Recurrences
22.1 The Towers of Hanoi
22.2 Merge Sort
22.3 Linear Recurrences
22.4 Divide-and-Conquer Recurrences
22.5 A Feel for Recurrences
Mathematics for Computer Science (Eric Lehman / F Thomson Leighton / Albert R Meyer 著)的更多相关文章
- 6.042 Mathematics for Computer Science
课程信息 6.042 Mathematics for Computer Science
- [转载] A set of top Computer Science blogs
This started out as a list of top Computer Science blogs, but it more closely resembles a set: the o ...
- Discovering the Computer Science Behind Postgres Indexes
This is the last in a series of Postgres posts that Pat Shaughnessy wrote based on his presentation ...
- Will Georgia Tech's $7K online M.S. in computer science program make the grade?
https://newatlas.com/georgia-tech--graduate-computer-science-degree-mooc/28763/ Georgia Tech to offe ...
- Computer Science: the Big Picture
1.课程PPTMIT OpenCourseWarehttp://ocw.mit.edu/courses/; Courses Stanfordhttp://cs.stanford.edu/course ...
- What every computer science major should know 每一个计算机科学专业的毕业生都应该都知道的
Given the expansive growth in the field, it's become challenging to discern what belongs in a modern ...
- Mathematics for Computer Graphics数学在计算机图形学中的应用 [转]
最近严重感觉到数学知识的不足! http://bbs.gameres.com/showthread.asp?threadid=10509 [译]Mathematics for Computer Gra ...
- Computer Science Theory for the Information Age-4: 一些机器学习算法的简介
一些机器学习算法的简介 本节开始,介绍<Computer Science Theory for the Information Age>一书中第六章(这里先暂时跳过第三章),主要涉及学习以 ...
- Computer Science Theory for the Information Age-1: 高维空间中的球体
高维空间中的球体 注:此系列随笔是我在阅读图灵奖获得者John Hopcroft的最新书籍<Computer Science Theory for the Information Age> ...
随机推荐
- js没有函数重载
上面这道题,要求判断输出的y和z分别为什么 一开始,我选择了2,4 后来发现答案是4,4 意识到js中没有函数重载!!!即使声明了两个同名函数,结果也是后面的函数覆盖了前一个函数. 而且函数声明会提升 ...
- 《温故而知新》JAVA基础三
面向对象 现实定义: 购买手机 阐述描述配置尺寸啥的,要求能打电话,然后服务员给你拿出一款手机,你所阐述的就是类,服务员给你的就是对象 package com.xie public class Tel ...
- 《Visual C# 从入门到精通》第一章使用变量、操作符和表达式——读书笔记
前言: 这个笔记是我个人总结,主要是熟练自己查看<Visual C# 从入门到精通>(第8版)这本书时,懵然起总结的想法,只是总结一些知识点,在工作项目会用得上,但是对毫无C#语言基础的, ...
- Redis学习--Redis的安装与Jedis的简单使用
Redis安装 关于软件安装,之前是通过记录视频,前段时间发现可以直接阅读官网进行安装,这步省略 启动:前端启动直接启动src目录下redis-server,后端启动修改redis.conf中daem ...
- CentOS7.5 Python3安装pip报错:ModuleNotFoundError: No module named '_ctypes' --Python3
1.问题:pyhontModuleNotFoundError: No module named '_ctypes' 操作系统:CentOS7.5 安装完Pyhotn3后(如何安装Python3,安装 ...
- 覃超:Facebook的项目开发流程和工程师的绩效管理机制
覃超:Facebook的项目开发流程和工程师的绩效管理机制 http://mp.weixin.qq.com/s?__biz=MjM5MDE0Mjc4MA==&mid=2650992350&am ...
- 『Python CoolBook』C扩展库_其一_用法讲解
不依靠其他工具,直接使用Python的扩展API来编写一些简单的C扩展模块. 本篇参考PythonCookbook第15节和Python核心编程完成,值得注意的是,Python2.X和Python3. ...
- Mac OS 下安装nvm
关于安装: curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.33.8/install.sh 安装完成后关闭终端,重新打开终端输 ...
- Xcode10 library not found for -lstdc++ 找不到问题
在Xcode9上正常编译的项目,在Xcode10上编译可能会遇到如下错误: library not found library not found library not found for -lst ...
- eclipse工具类及插件(Eclipse超好用的插件推荐)
https://blog.csdn.net/ghostxbh/article/details/80054948