三分

给定平面内 \(n <= 2000\) 个节点, 求平面内一点使得到所有点的欧几里得距离和最小

确定 \(y\) 轴时 \(x\) 轴满足单峰函数

\(x\) 轴同理

三分套三分即可

深度优先搜索

从起始状态少的一侧开始搜索更优

例题

给你一副扑克中的 \(n\) 张牌, 出的下一张牌需要为前面出牌点数之和的约数, 求一种合法的方案

此题正向搜索代码如下:

void dfs(int depth, int sum){
if(depth == n){
output();
return ;
}
REP(i, 1, n){
if(!vis[i] && sum % a[i] == 0){
vis[i] = 1;
dfs(depth + 1, sum + a[i]);
vis[i] = 0;
}
}
}

显然初始分支很多, 考虑逆向搜索

void dfs(int depth, int left){
if(depth == 0){output();return ;}
REP(i, 1, n){
if(!vis[i] && (left - a[i]) % a[i] == 0){
vis[i] = 1;
dfs(depth - 1, left - a[i]);
vis[i] = 0;
}
}
}
//调用
dfs(n, sum[a[i]]);

初始分支减少, 搜索量减少

meet-in-the-middle

在指数级别复杂度显然无法承受时, 分别从两侧开始搜索, 在中间相遇, 减少搜索量

一般分别做 \(dfs\) 后, 在左边利用二分查找(或各种数据结构)寻找对应右边的值, 得到解的个数(用 \(STL\ map\) 也是很好的选择)

当发现有 \(\%\) 的时候大大降低搜索次数

通常降低次数的方式是

  1. 减少调用量(整除才进入)
  2. 枚举因子

数学部分

exgcd

\[gcd(a,b) = !b ? a : gcd(b, a \% b)
\]

当 $$b == 0$$ 时, 有 $$gcd(a, 0) = a$$

令 $$ax_{0} + by_{0} = gcd(a, b)$$

此时 $$a * 1 + 0 * 0 = gcd(a, 0) = a$$ 显然有

\[x_{0} = 1, y_{0} = 0
\]

现已递归求得 $$bx_{0} + (a % b)y_{0} = d$$

而$$(a%b) = a - \lfloor \frac{a}{b} \rfloor * b$$

构造成 $$ax + by = d$$ 形式得

\[ay_{0} + b(x_{0} - \lfloor \frac{a}{b} \rfloor * y_{0}) = d
\]

故 $$x = y_{0}, y = x_{0} - \lfloor \frac{a}{b} \rfloor * y_{0}$$

Code

int exgcd(int a, int b, int &x, int &y){
if(!b){x = 1, y = 0;return a;}
int d = exgcd(b, a % b, x, y);
int temp = x;x = y;y = temp - (a / b) * y;
return d;
}

有关于线段树和树剖

线段树标记下推记得考虑对子节点标记的影响

若是多组询问, 初始化时记得考虑如下几个方面

    nume = 1;//原图边编号
memset(head, 0, sizeof(head));//初始化原图
tot = 0;//树剖节点
lazytag = -1;//线段树懒标记

Tony的口胡呼呼(。-ω-)zzz的更多相关文章

  1. Topcoder口胡记 SRM 562 Div 1 ~ SRM 599 Div 1

    据说做TC题有助于提高知识水平? :) 传送门:https://284914869.github.io/AEoj/index.html 转载请注明链接:http://www.cnblogs.com/B ...

  2. 口胡FFT现场(没准就听懂了)&&FFT学习笔记

    前言(不想听的可以跳到下面) OK.蒟蒻又来口胡了. 自从ZJOI2019上Day的数论课上的多项式听到懵逼了,所以我就下定决心要学好多项式.感觉自己以前学的多项式都是假的. 但是一直在咕咕,现在是中 ...

  3. BZOJ 口胡记录

    最近实在是懒的不想打代码...好像口胡也算一种训练,那就口胡把. BZOJ 2243 染色(树链剖分) 首先树链剖分,然后记录下每个区间的左右端点颜色和当前区间的颜色段.再对每个节点维护一个tag标记 ...

  4. Atcoder/Topcoder 口胡记录

    Atcoder/Topcoder 理论 AC Atcoder的❌游戏示范 兴致勃勃地打开一场 AGC 看 A 题,先 WA 一发,然后花了一年时间 Fix. 看 B 题,啥玩意?这能求? 睡觉觉. e ...

  5. NOIP2016考前做题(口胡)记录

    NOIP以前可能会持续更新 写在前面 NOIP好像马上就要到了,感觉在校内训练里面经常被虐有一种要滚粗的感觉(雾.不管是普及组还是提高组,我都参加了好几年了,结果一个省一都没有,今年如果还没有的话感觉 ...

  6. 关于有向图走“无限次”后求概率/期望的口胡/【题解】HNCPC2019H 有向图

    关于有向图走"无限次"后求概率/期望的口胡/[题解]HNCPC2019H 有向图 全是口胡 假了不管 讨论的都是图\(G=(V,E),|V|=n,|E|=m\)上的情况 " ...

  7. 「口胡题解」「CF965D」Single-use Stones

    目录 题目 口胡题解 题目 有许多的青蛙要过河,可惜的是,青蛙根本跳不过河,他们最远只能跳 \(L\) 单位长度,而河宽 \(W\) 单位长度. 在河面上有一些石头,距离 \(i\) 远的地方有 \( ...

  8. PKUSC 2022 口胡题解

    \(PKUSC\ 2022\)口胡题解 为了更好的在考试中拿分,我准备学习基础日麻知识(为什么每年都考麻将 啊啊啊) 首先\(STO\)吉老师\(ORZ,\)真的学到了好多 观察标签发现,这套题覆盖知 ...

  9. 「线性基」学习笔记and乱口胡总结

    还以为是什么非常高大上的东西花了1h不到就学好了 线性基 线性基可以在\(O(nlogx)\)的时间内计算出\(n\)个数的最大异或和(不需要相邻). 上述中\(x\)表示的最大的数. 如何实现 定义 ...

随机推荐

  1. Python学习笔记 -- 第五章

    模块 使用模块可以提高了代码的可维护性.其次,编写代码不必从零开始.当一个模块编写完毕,就可以被其他地方引用.我们在编写程序的时候,也经常引用其他模块,包括Python内置的模块和来自第三方的模块: ...

  2. 小学四则运算APP 第一阶段冲刺

    需求分析 1.相关系统分析员向用户初步了解需求,然后用word列出要开发的系统的大功能模块,每个大功能模块有哪些小功能模块,对于有些需求比较明确相关的界面时,在这一步里面可以初步定义好少量的界面.[1 ...

  3. octave基本指令3

    octave基本指令3 数据运算 >> a = [1 2; 3 4; 5 6]; >> b = [11 12; 13 14; 15 16]; >> c = [1 1 ...

  4. opencv学习笔记(一)

    摘要:最近要做一个和图像处理有联系的项目,从此走上了学习opencv的道路. 灰度图:2维矩阵 彩色图:3维矩阵 ps:目前大部分设备都是用无符号 8 位整数(类型为 CV_8U)表示像素亮度 Mat ...

  5. Jquery ajax ajaxStart()和ajaxStop()加载前的优雅表现

    Jquery中当一个Ajax请求启动时,并且没有其他未完成的Ajax请求时,将调用ajaxStart()方法.同样,ajaxStop()方法则是在所有Ajax请求都完成时调用.这些方法的参数都是一个函 ...

  6. React 表单控件onSubmit

    <!DOCTYPE html><html><head lang="en"> <meta charset="UTF-8" ...

  7. 暂时刷完leetcode的一点小体会

    两年前,在实习生笔试的时候,笔试百度,对试卷上很多问题感到不知所云,毫无悬念的挂了 读研两年,今年代笔百度,发现算法题都见过,或者有思路,但一时之间居然都想不到很好的解法,而且很少手写思路,手写代码, ...

  8. k8s 1.9 安装

    测试环境 主机 系统 master CentOS 7.3 node CentOS 7.3 2.关闭selinux(所有节点都执行) [root@matser ~]# getenforce Disabl ...

  9. loadrunner基础学习笔记六-运行负载

    controller视图: 场景组 窗格:查看场景组内vuser状态,使用窗格右侧的按钮可以启动.停止和重置场景,查看各个vuser的状态,通过手动添加更多vuser增加场景运行期间应用程序的负载 场 ...

  10. jquery 動畫

    animate({param},speed,callback)/animate({param},speed)/animate({param}) param表示css屬性:屬性名必須是camel標識法: ...