BZOJ[Usaco2017 Jan]Promotion Counting——线段树合并
题目描述
问对于每个奶牛来说,它的子树中有几个能力值比它大的。
输入
接下来n行为1-n号奶牛的能力值pi
接下来n-1行为2-n号奶牛的经理(树中的父亲)
输出
样例输入
804289384
846930887
681692778
714636916
957747794
1
1
2
3
样例输出
0
1
0
0
#include<set>
#include<map>
#include<stack>
#include<queue>
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n,m;
int x;
int tot;
int cnt;
char ch[2];
int v[100010];
int h[100010];
int to[100010];
int ans[100010];
int ls[2000010];
int rs[2000010];
int sum[2000010];
int next[100010];
int head[100010];
int root[100010];
void add(int x,int y)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
}
void insert(int &rt,int l,int r,int k)
{
if(!rt)
{
rt=++cnt;
}
if(l==r)
{
sum[rt]++;
return ;
}
int mid=(l+r)>>1;
if(k<=mid)
{
insert(ls[rt],l,mid,k);
}
else
{
insert(rs[rt],mid+1,r,k);
}
sum[rt]=sum[ls[rt]]+sum[rs[rt]];
}
void merge(int &x,int y)
{
if(!x||!y)
{
x=x+y;
return ;
}
sum[x]=sum[x]+sum[y];
merge(ls[x],ls[y]);
merge(rs[x],rs[y]);
}
int query(int rt,int l,int r,int k)
{
if(l==r)
{
return 0;
}
int mid=(l+r)>>1;
if(k<=mid)
{
return query(ls[rt],l,mid,k)+sum[rs[rt]];
}
else
{
return query(rs[rt],mid+1,r,k);
}
}
void dfs(int x)
{
for(int i=head[x];i;i=next[i])
{
dfs(to[i]);
merge(root[x],root[to[i]]);
}
ans[x]=query(root[x],1,m,v[x]);
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&v[i]);
h[i]=v[i];
}
sort(h+1,h+n+1);
m=unique(h+1,h+n+1)-h-1;
for(int i=2;i<=n;i++)
{
scanf("%d",&x);
add(x,i);
}
for(int i=1;i<=n;i++)
{
v[i]=lower_bound(h+1,h+1+m,v[i])-h;
insert(root[i],1,m,v[i]);
}
dfs(1);
for(int i=1;i<=n;i++)
{
printf("%d\n",ans[i]);
}
}
BZOJ[Usaco2017 Jan]Promotion Counting——线段树合并的更多相关文章
- bzoj 4756 [Usaco2017 Jan]Promotion Counting——线段树合并
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4756 线段树合并裸题.那种返回 int 的与传引用的 merge 都能过.不知别的题是不是这 ...
- BZOJ4756: [Usaco2017 Jan]Promotion Counting(线段树合并)
题意 题目链接 Sol 线段树合并板子题 #include<bits/stdc++.h> using namespace std; const int MAXN = 400000, SS ...
- BZOJ4756:[USACO]Promotion Counting(线段树合并)
Description n只奶牛构成了一个树形的公司,每个奶牛有一个能力值pi,1号奶牛为树根. 问对于每个奶牛来说,它的子树中有几个能力值比它大的. Input n,表示有几只奶牛 n<=10 ...
- bzoj 4756 Promotion Counting —— 线段树合并
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4756 合并子树的权值线段树: merge 返回 int 或者是 void 都可以. 代码如下 ...
- 【bzoj4756】[Usaco2017 Jan]Promotion Counting 离散化+树状数组
原文地址:http://www.cnblogs.com/GXZlegend/p/6832263.html 题目描述 The cows have once again tried to form a s ...
- [BZOJ4756][Usaco2017 Jan]Promotion Counting 树状数组
4756: [Usaco2017 Jan]Promotion Counting Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 305 Solved: ...
- [BZOJ 1483] [HNOI2009] 梦幻布丁 (线段树合并)
[BZOJ 1483] [HNOI2009] 梦幻布丁 (线段树合并) 题面 N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1 ...
- 线段树合并 || 树状数组 || 离散化 || BZOJ 4756: [Usaco2017 Jan]Promotion Counting || Luogu P3605 [USACO17JAN]Promotion Counting晋升者计数
题面:P3605 [USACO17JAN]Promotion Counting晋升者计数 题解:这是一道万能题,树状数组 || 主席树 || 线段树合并 || 莫队套分块 || 线段树 都可以写..记 ...
- 2018.08.27 [Usaco2017 Jan]Promotion Counting(线段树合并)
描述 The cows have once again tried to form a startup company, failing to remember from past experienc ...
随机推荐
- 【Codeforces 3D】Least Cost Bracket Sequence
Codeforces 3 D 题意:有一个括号序列,其中一些位置是问号,把第\(i\)个问号改成(需要\(a_i\)的代价,把它改成)需要\(b_i\)的代价. 问使得这个括号序列成立所需要的最小代价 ...
- 『转』统计一个日志文件里,单词出现频率的shell脚本
原文地址:http://blog.csdn.net/taiyang1987912/article/details/39995175 #查找文本中n个出现频率最高的单词 #!/bin/bash coun ...
- VS2017上执行VS2013项目错误MSB802之解决方案
进行想把我编写的数字图像处理软件MagicHouse更新到最新的VS2017开发环境下,原来的开发环境是VS2013.但是用VS2017打开项目并编译时,系统报错误MSB802,如下图所示. 其实Vi ...
- Spring Boot 之 Profile 使用
Spring Boot 之 Profile 使用 一个应用为了在不同的环境下工作,常常会有不同的配置,代码逻辑处理.Spring Boot 对此提供了简便的支持. 关键词: @Profile.spri ...
- Ionic2 调用Custom Cordova Plugin方法
APP升级到Ionic2之后,如何调用自己写的pulgin,一直测试不成功,现记录这一经过. plugin目前可以分为3类,A类是ionic-native自带的,可以直接导入Typescript类,直 ...
- [Oracle]数据库的Control File 取Dump后的样例
[Oracle]数据库的Control File 取Dump后的样例: 片段截取-------------------------------(size = 40, compat size = 40, ...
- HNOI2018简要题解
HNOI2018简要题解 D1T1 寻宝游戏 题意 某大学每年都会有一次 Mystery Hunt 的活动,玩家需要根据设置的线索解谜,找到宝藏的位置,前一年获胜的队伍可以获得这一年出题的机会. 作为 ...
- [开源 .NET 跨平台 Crawler 数据采集 爬虫框架: DotnetSpider] [二] 基本使用
[DotnetSpider 系列目录] 一.初衷与架构设计 二.基本使用 三.配置式爬虫 四.JSON数据解析与配置系统 五.如何做全站采集 使用环境 Visual Studio 2017 .NET ...
- 2018年高教社杯全国大学生数学建模竞赛B题解题思路
题目 先贴下B题的题目吧 问题B 智能RGV的动态调度策略 图1是一个智能加工系统的示意图,由8台计算机数控机床(Computer Number Controller,CNC).1辆轨道式自动引 ...
- Mysqldump备份说明及数据库备份脚本分享-运维笔记
MySQLdump是MySQL自带的导出数据工具,即mysql数据库中备份工具,用于将MySQL服务器中的数据库以标准的sql语言的方式导出,并保存到文件中.Mysqldump是一个客户端逻辑备份的工 ...