keras用vgg16做图像分类
实际上我只是提供一个模版而已,代码应该很容易看得懂,label是存在一个csv里面的,图片是在一个文件夹里面的
没GPU的就不用尝试了,训练一次要很久很久。。。
## import libaries
import pandas as pd
import numpy as np
from skimage import io
import os, sys
from tqdm import tqdm
## load data
train = pd.read_csv('./data/data/train.csv')
test = pd.read_csv('./data/data/test.csv')
def read_img(img_path):
img = io.imread(img_path)
return img
## set path for images
TRAIN_PATH = './data/data/train_img/'
TEST_PATH = './data/data/test_img/'
# load data
train_img, test_img = [],[]
for img_path in tqdm(train['image_id'].values):
train_img.append(read_img(TRAIN_PATH + img_path + '.png'))
for img_path in tqdm(test['image_id'].values):
test_img.append(read_img(TEST_PATH + img_path + '.png'))
# normalize images
x_train = np.array(train_img, np.float32) / 255.
x_test = np.array(test_img, np.float32) / 255.
# target variable - encoding numeric value
label_list = train['label'].tolist()
Y_train = {k:v+1 for v,k in enumerate(set(label_list))}
y_train = [Y_train[k] for k in label_list]
y_train = np.array(y_train)
from keras import applications
from keras.models import Model
from keras import optimizers
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.layers.normalization import BatchNormalization
from keras.metrics import categorical_accuracy
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import EarlyStopping
from keras.utils import to_categorical
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import ModelCheckpoint
y_train = to_categorical(y_train)
#Transfer learning with Inception V3
base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=(256, 256, 3))
## set model architechture
add_model = Sequential()
add_model.add(Flatten(input_shape=base_model.output_shape[1:]))
add_model.add(Dense(256, activation='relu'))
add_model.add(Dense(y_train.shape[1], activation='softmax'))
model = Model(inputs=base_model.input, outputs=add_model(base_model.output))
model.compile(loss='categorical_crossentropy', optimizer=optimizers.SGD(lr=1e-4, momentum=0.9),
metrics=['accuracy'])
model.summary()
batch_size = 128 # tune it
epochs = 30 # increase it
print ("Hello")
train_datagen = ImageDataGenerator(
shear_range=0.2,
zoom_range=0.2,
rotation_range=30,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=True)
train_datagen.fit(x_train)
history = model.fit_generator(
train_datagen.flow(x_train, y_train, batch_size=batch_size),
steps_per_epoch=x_train.shape[0] // batch_size,
epochs=epochs,
callbacks=[ModelCheckpoint('VGG16-transferlearning2.model', monitor='val_acc', save_best_only=True)]
)
## predict test data
predictions = model.predict(x_test)
# get labels
predictions = np.argmax(predictions, axis=1)
rev_y = {v:k for k,v in Y_train.items()}
pred_labels = [rev_y[k] for k in predictions]
## make submission
sub = pd.DataFrame({'image_id':test.image_id, 'label':pred_labels})
sub.to_csv('sub_vgg2.csv', index=False) ## ~0.59
keras用vgg16做图像分类的更多相关文章
- 【Keras篇】---利用keras改写VGG16经典模型在手写数字识别体中的应用
一.前述 VGG16是由16层神经网络构成的经典模型,包括多层卷积,多层全连接层,一般我们改写的时候卷积层基本不动,全连接层从后面几层依次向前改写,因为先改参数较小的. 二.具体 1.因为本文中代码需 ...
- Keras实现VGG16
一.代码实现 # -*- coding: utf-8 -*- """ Created on Sat Feb 9 15:33:39 2019 @author: zhen & ...
- 如何在程序中调用Caffe做图像分类
Caffe是目前深度学习比较优秀好用的一个开源库,采样c++和CUDA实现,具有速度快,模型定义方便等优点.学习了几天过后,发现也有一个不方便的地方,就是在我的程序中调用Caffe做图像分类没有直接的 ...
- AI从入门到放弃:CNN的导火索,用MLP做图像分类识别?
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 作者:郑善友 腾讯MIG后台开发工程师 导语:在没有CNN以及更先进的神经网络的时代,朴素的想法是用多层感知机(MLP)做图片分类的识别:但 ...
- keras 的svm做分类
SVC继承了父类BaseSVC SVC类主要方法: ★__init__() 主要参数: C: float参数 默认值为1.0 错误项的惩罚系数.C越大,即对分错样本的惩罚程度越大,因此在训练样本中准确 ...
- 基于Keras 的VGG16神经网络模型的Mnist数据集识别并使用GPU加速
这段话放在前面:之前一种用的Pytorch,用着还挺爽,感觉挺方便的,但是在最近文献的时候,很多实验都是基于Google 的Keras的,所以抽空学了下Keras,学了之后才发现Keras相比Pyto ...
- 用keras的cnn做人脸分类
keras介绍 Keras是一个简约,高度模块化的神经网络库.采用Python / Theano开发. 使用Keras如果你需要一个深度学习库: 可以很容易和快速实现原型(通过总模块化,极简主义,和可 ...
- 用keras实现基本的图像分类任务
数据集介绍 fashion mnist数据集是mnist的进阶版本,有10种对应的结果 训练集有60000个,每一个都是28*28的图像,每一个对应一个标签(0-9)表示 测试集有10000个 代码 ...
- VGG16学习笔记
转载自:http://deanhan.com/2018/07/26/vgg16/ 摘要 本文对图片分类任务中经典的深度学习模型VGG16进行了简要介绍,分析了其结构,并讨论了其优缺点.调用Keras中 ...
随机推荐
- C# 操作windows服务[启动、停止、卸载、安装]
主要宗旨:不已命令形式操作windows服务 static void Main(string[] args) { var path = @"E:\开发辅助项目\WCF\WCF.Test\WC ...
- yarn的安装与使用及与npm对应的命令
在Nodejs环境下,通过npm install -g yarn 命令进行全局安装 例如:yarn versionyarn inityarn installyarn add vueyarn add v ...
- Vuex详解笔记1
vuex 是什么Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式.它采用集中式存储管理应用的所有组件的状态,并以相应的规则保证状态以一种可预测的方式发生变化. 什么是状态?状态这里泛指 ...
- HL7消息部分笔记
1.关于HL7标准 HL7是HealthLevel7的缩写,主要用于医疗领域不同的系统.应用之间的信息传递.规范各个系统间的信息传递格式. 2.字段含义: Z信息段: Z信息段是指与HL7第二版标准其 ...
- Codeforces 873F Forbidden Indices 字符串 SAM/(SA+单调栈)
原文链接https://www.cnblogs.com/zhouzhendong/p/9256033.html 题目传送门 - CF873F 题意 给定长度为 $n$ 的字符串 $s$,以及给定这个字 ...
- Mybatis关联一对多映射不能查询出所有的数据的问题
在使用Mybatis进行一对多查询时,如果返回的是一个对象的话,可以发现将一对多的数据全都取出来了,但是这样的缺点是有很多值为null,我们更喜欢将返回值设为Map的形式,这样可以去除那些多余null ...
- oracle数据库删除数据恢复
select * from table_name as of timestamp trunc(sysdate)-10; 数字部分可以调整到最近时间内 复制表内容 insert into res_pro ...
- Date、Calendar、DateFormat类
Date类与Calendar类之间的转换 package date; import java.util.Calendar; import java.util.Date; public class Da ...
- python系统性能模块笔记
内存信息psutil.cpu_times() 使用cpu_times方法获取cpu完整信息,需要显示所有逻辑cpu信息(指定变量percpu=True)psutil.cpu_ti ...
- jenkins+springboot+svn linux 自动化部署
需要下载 publish over ssh 插件(远程上传项目到服务器) Maven Integration plugin 插件(构建maven项目) 然后将各种配置配置好 最终项目在服务器上的路径是 ...