动态规划

动态规划对于子问题重叠的情况特别有效,因为它将子问题的解保存在表格,当需要某个子问题的解

时,直接取值即可,从而避免重复计算。

基本思路与策略

基本思想与分治法类似,也是将带求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前子问题的解,为后子问题

的求解提供了有用的信息。在求解任一子问题时,列出各种问题的局部解。

动态规划中的子问题往往不是相互独立的,在求解的过程中,许多子问题的解被反复使用。为了避免重复计算。动态规划采用l

了填表来保存子问题解的方法。

3.适用情况:

1)两个必要的要素

适合应用动态规划方法求解的最优化问题应该具备两个重要的要素:最优子结构和子问题重叠。

最优子结构;问题的最优解相关子问题的最优解组合而成,并且可以独立求解子问题。

子问题重叠:递归过程反复的在求解相同的子问题。

三个性质

能采用动态规划求解的问题一般要具有3个性质:

(a)最优化原理:

如果问题的最优解所包含的子问题的解也是最优的,就称该问题具有最优子结构,即满足最优化原理。

(b)无后效性:即某阶段状态(定义的新子问题)一旦确定,就不受这个状态以后决策的影响。

也就是说,某状态以后的过程不会影响以前的状态,只与其以前的状态有关。

(c)有重叠子问题:即子问题之间是不独立的(分治法是独立的),一个子问题在下一阶段决策中可能被多次使用到。

该性质并不是动态规划适用的必要条件,但是如果没有这条性质,动态规划适用的必要条件,但是如果没有这条性质,动态规划算法同其他算法相比就不具备优势。

4.求解的基本步骤:

实际应用中可以按一下几个简化的步骤进行设计:

(1)分析最优解的性质,并刻画其结构特征,这一步的开始时一定要从子问题入手。

(2)定义最优解变量,定义递归最优解公式

(3)以自底向上计算出最优值(或自顶向下的记忆化方式(即备忘录法))

(4)根据计算最优值时得到的信息,构造问题的最优解

二. 动态规划的自我总结

三.分析几个经典的动态规划例子

例子1.最长回文字符串

leetcode 总结 动态规划问题小结的更多相关文章

  1. leetcode笔记 动态规划在字符串匹配中的应用

    目录 leetcode笔记 动态规划在字符串匹配中的应用 0 参考文献 1. [10. Regular Expression Matching] 1.1 题目 1.2 思路 && 解题 ...

  2. Leetcode之动态规划(DP)专题-详解983. 最低票价(Minimum Cost For Tickets)

    Leetcode之动态规划(DP)专题-983. 最低票价(Minimum Cost For Tickets) 在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行.在接下来的一年里,你要旅行的 ...

  3. Leetcode之动态规划(DP)专题-647. 回文子串(Palindromic Substrings)

    Leetcode之动态规划(DP)专题-647. 回文子串(Palindromic Substrings) 给定一个字符串,你的任务是计算这个字符串中有多少个回文子串. 具有不同开始位置或结束位置的子 ...

  4. Leetcode之动态规划(DP)专题-474. 一和零(Ones and Zeroes)

    Leetcode之动态规划(DP)专题-474. 一和零(Ones and Zeroes) 在计算机界中,我们总是追求用有限的资源获取最大的收益. 现在,假设你分别支配着 m 个 0 和 n 个 1. ...

  5. Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner)

    Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner) 给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端 ...

  6. Leetcode之动态规划(DP)专题-264. 丑数 II(Ugly Number II)

    Leetcode之动态规划(DP)专题-264. 丑数 II(Ugly Number II) 编写一个程序,找出第 n 个丑数. 丑数就是只包含质因数 2, 3, 5 的正整数. 示例: 输入: n ...

  7. Leetcode之动态规划(DP)专题-198. 打家劫舍(House Robber)

    Leetcode之动态规划(DP)专题-198. 打家劫舍(House Robber) 你是一个专业的小偷,计划偷窃沿街的房屋.每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互 ...

  8. Leetcode之动态规划(DP)专题-121. 买卖股票的最佳时机(Best Time to Buy and Sell Stock)

    Leetcode之动态规划(DP)专题-121. 买卖股票的最佳时机(Best Time to Buy and Sell Stock) 股票问题: 121. 买卖股票的最佳时机 122. 买卖股票的最 ...

  9. Leetcode之动态规划(DP)专题-122. 买卖股票的最佳时机 II(Best Time to Buy and Sell Stock II)

    Leetcode之动态规划(DP)专题-122. 买卖股票的最佳时机 II(Best Time to Buy and Sell Stock II) 股票问题: 121. 买卖股票的最佳时机 122. ...

随机推荐

  1. (转载)Java多线程返回值处理

    一.概述 到目前为止,我们已经能够声明并使一个线程任务运行起来了.但是遇到一个问题:现在定义的任务都没有任何返回值,那么加入我们希望一个任务运行结束后告诉我一个结果,该结果表名任务执行成功或失败,此时 ...

  2. zw量化交易·实盘操作·系列培训班

    参见: <zw量化交易·实盘操作·系列培训班> http://blog.sina.com.cn/s/blog_7100d4220102w0q5.html

  3. Delphi7使用一段时间后抽风提示注册

    今天在单位用电脑接自己的移动硬盘,一打开资源管理器就卡死,删除硬盘总是提示用程序在使用,反复试了几次,老样子.很是窝火.干脆直接关机电脑,桌面上还有开着的Delphi编译器,重新开机!开机后一打开编译 ...

  4. Dockfile基本语法

    FROM 功能为指定基础镜像,并且必须是第一条指令. 如果不以任何镜像为基础,那么可写为:FROM scratch. 接下来所写的指令将作为镜像的第一层开始. 格式: FROM <image&g ...

  5. 不同路由器下远程ssh登录Beaglebone系统(通过路由器端口转发,配合花生壳的DDNS功能)

    使用场景: 一般家庭设备都是通过路由器中转连上互联网的,而且运营商给家庭宽带分配的IP地址也是动态的.随时可能变动的.所以当程序员们离开家之后,是很难直接和家里的设备进行交互的.但是通过TPLINK路 ...

  6. 剑指offer(7)斐波那契数列

    题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项. n<=39 题目分析 我们都知道斐波那契可以用递归,但是递归重复计算的部分太多了(虽然可以通过),但是这 ...

  7. Guitar Pro特殊符号讲解之附点音符

    今天要讲解Guitar Pro里附点音符的作用,附点音符也是大家在编曲做谱的时候,经常需要使用的一个符号,它在Guitar Pro分为附点和双附点. 附点:记在音符符头右边的圆点,用以增长音符的时值. ...

  8. Ngnix配置

    server { listen 80; server_name www.local.test; root /data/workspace;  index index.php index.html in ...

  9. Perl调用外部命令(其他脚本、系统命令)的方法和区别

    1. `command`; 使用反引号调用外部命令能够捕获其标准输出,并按行返回且每行结束处附带一个回车.反引号中的变量在编译时会被内插为其值.   2. open LIST "ls -l| ...

  10. winform左右滑动

    public static class FormTransform { public static void TransformSize(Form frm, int newWidth, int new ...