[la P5031&hdu P3726] Graph and Queries

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Problem Description
You are given an undirected graph with N vertexes and M edges. Every vertex in this graph has an integer value assigned to it at the beginning. You're also given a sequence of operations and you need to process them as requested. Here's a list of the possible operations that you might encounter:
1)  Deletes an edge from the graph.
The format is [D X], where X is an integer from 1 to M, indicating the ID of the edge that you should delete. It is guaranteed that no edge will be deleted more than once.
2)  Queries the weight of the vertex with K-th maximum value among all vertexes currently connected with vertex X (including X itself).
The format is [Q X K], where X is an integer from 1 to N, indicating the id of the vertex, and you may assume that K will always fit into a 32-bit signed integer. In case K is illegal, the value for that query will be considered as undefined, and you should return 0 as the answer to that query.
3)  Changes the weight of a vertex.
The format is [C X V], where X is an integer from 1 to N, and V is an integer within the range [-106, 106].

The operations end with one single character, E, which indicates that the current case has ended.
For simplicity, you only need to output one real number - the average answer of all queries.

Input
There are multiple test cases in the input file. Each case starts with two integers N and M (1 <= N <= 2 * 104, 0 <= M <= 6 * 104), the number of vertexes in the graph. The next N lines describes the initial weight of each vertex (-106 <= weight[i] <= 106). The next part of each test case describes the edges in the graph at the beginning. Vertexes are numbered from 1 to N. The last part of each test case describes the operations to be performed on the graph. It is guaranteed that the number of query operations [Q X K] in each case will be in the range [1, 2 * 105], and there will be no more than 2 * 105 operations that change the values of the vertexes [C X V].

There will be a blank line between two successive cases. A case with N = 0, M = 0 indicates the end of the input file and this case should not be processed by your program.

Output
For each test case, output one real number – the average answer of all queries, in the format as indicated in the sample output. Please note that the result is rounded to six decimal places.

Sample Input
3 3
10
20
30
1 2
2 3
1 3
D 3
Q 1 2
Q 2 1
D 2
Q 3 2
C 1 50
Q 1 1
E
3 3
10
20
20
1 2
2 3
1 3
Q 1 1
Q 1 2
Q 1 3
E
0 0

Sample Output
Case 1: 25.000000
Case 2: 16.666667

Hint

For the first sample: D 3 -- deletes the 3rd edge in the graph (the remaining edges are (1, 2) and (2, 3)) Q 1 2 -- finds the vertex with the second largest value among all vertexes connected with 1. The answer is 20. Q 2 1 -- finds the vertex with the largest value among all vertexes connected with 2. The answer is 30. D 2 -- deletes the 2nd edge in the graph (the only edge left after this operation is (1, 2)) Q 3 2 -- finds the vertex with the second largest value among all vertexes connected with 3. The answer is 0 (Undefined). C 1 50 -- changes the value of vertex 1 to 50. Q 1 1 -- finds the vertex with the largest value among all vertex connected with 1. The answer is 50. E -- This is the end of the current test case. Four queries have been evaluated, and the answer to this case is (20 + 30 + 0 + 50) / 4 = 25.000. For the second sample, caution about the vertex with same weight: Q 1 1 – the answer is 20 Q 1 2 – the answer is 20 Q 1 3 – the answer is 10.

 
Source

这题很经典,但又有坑——

首先,这题涉及到删边。

删边不方便,这时我们自然会想到删边的反面——加边。

那我们就可以倒着来操作,方便D操作。

但同时,每个点的权值也要从终状态到始状态来变化。

然后,我们就可以用并查集来实现加边操作,就把一条边加上了。

当然,最终状态也存在一些边,刚开始也要连上。

然后,Q操作要求我们查询连通块内第k大,如果k不合法则返回0。

第k大可以用一个平衡树来维护,我用了treap名次树,方便一些。

但是,注意这里的第k大可能有些定义上的模糊,我最后几发就被坑了。

似乎没有人是加了一个“相同点的个数”这个域A掉了的,我也是改用lrj的写法才A了的,这个需要注意一下。

然后第k大不合法,有可能是超出连通块大小,也有可能k<1。

对于C操作,就相当于再某个连通块中先删掉一个点权为w1的点,再加入一个点权为为w2的点,w1,w2就不多说了。

但是无论如何,都要注意,点权的变化顺序是怎样的。

如果就这样写——就T了。

为什么呢?可能会有数据卡“加边”这一个操作。在这里我们需要合并两颗平衡树。

怎么合并?我们采用启发式合并。就是从节点数小的向节点数大的树并。

怎么证明这样操作的时间复杂度是对的?假设树T1有n1个节点,T2有n2个节点,且n1>n2。

那么显然,我们会把T2并到T1里面。复杂度接近于O(n2logn1)。

由于对于原来T2里的每个点,它所在的树的大小至少增大了一倍,所以对于任意节点,它会被移动不超过logn次。

所以总复杂度是O(n(logn)^2)的。

然后。。通过这个题目,学到了treap的启发式合并和删除。。

code:

 %:pragma GCC optimize()
 #include<bits/stdc++.h>
 #define LL long long
 using namespace std;
 ,M=,Q=;
 int n,m,q,cas,w[N],fa[N];
 char ch; LL ans,cnt; bool vis[M];
 struct edg {int x,y;}a[M];
 struct opt {char t; int x,k;}o[Q];
 class node {
     private:
     public:
         ];
         node() {ch[]=ch[]=;}
         inline void newnode(node* &cu,int v) {
             cu=;
         }
         inline void update(node* &cu) {
             cu->s=;
             ]!=) cu->s+=cu->ch[]->s;
             ]!=) cu->s+=cu->ch[]->s;
         }
         inline void rotate(node* &cu,bool dr) {
             node* tmp=cu->ch[dr^]->ch[dr];
             cu->ch[dr^]->ch[dr]=cu;
             cu=cu->ch[dr^];
             cu->ch[dr]->ch[dr^]=tmp;
             update(cu->ch[dr]);
             update(cu);
         }
         inline void insert(node* &cu,int v) {
             ) {newnode(cu,v); return;}
             bool p=v<=cu->v;
             insert(cu->ch[p],v);
             );
             else update(cu);
         }
         inline void remove(node* &cu,int v) {
             ) return;
             if (v==cu->v) {
                 ]==&&cu->ch[]==) {cu=; return;}
                 ]==||cu->ch[]==) {
                     cu=cu->ch[]==?cu->ch[]:cu->ch[]; return;
                 }
                 ]->k>cu->ch[]->k;
                 rotate(cu,p^);
                 remove(cu->ch[p^],v);
                 update(cu);
                 return;
             }
             int p=v<=cu->v;
             remove(cu->ch[p],v);
             update(cu);
         }
         inline int kth(node* cu,int k) {
             ||cu==) ;
             ]!=)?cu->ch[]->s:;
             ) return cu->v;
             ) ],k);
             ],k-s-);
         }
         inline void merge(node* &major,node* &minor) {
             insert(major,minor->v);
             ]!=) merge(major,minor->ch[]);
             ]!=) merge(major,minor->ch[]);
             ;
         }
         inline void clear(node* &cu) {
             ]!=) clear(cu->ch[]);
             ]!=) clear(cu->ch[]);
             ;
         }
 }t,*root[N];
 inline int read() {
     ,f=; ch=getchar();
     ') {if (ch=='-') f=-f; ch=getchar();}
     +ch-',ch=getchar();
     return x*f;
 }
 inline char readch() {
     while (ch<'A'||ch>'Z') ch=getchar();
     return ch;
 }
 inline int get(int x) {
     return fa[x]==x?x:fa[x]=get(fa[x]);
 }
 int main() {
     srand(),cas=;
     while (scanf("%d%d",&n,&m)!=EOF&&n) {
         ans=cnt=q=,memset(vis,,sizeof vis);
         ,x; i<=n; i++) w[i]=read();
         ; i<=m; i++) a[i].x=read(),a[i].y=read();
         for ( ; ; ) {
             o[++q].t=readch();
             if (o[q].t=='E') break;
             o[q].x=read();
             if (o[q].t!='D') o[q].k=read();
         }
         ,v; i<q; i++) {
             ;
             if (o[i].t=='C') swap(w[o[i].x],o[i].k);
         }
         ; i<=n; i++) {
             fa[i]=i; ) t.clear(root[i]);
         }
         ,x,y; i<=m; i++) if (!vis[i]) {
             x=get(a[i].x),y=get(a[i].y);
             if (x==y) continue; else fa[x]=y;
         }
         ; i<=n; i++) t.insert(root[get(i)],w[i]);
         ; i--) {
             if (o[i].t=='D') {
                 x=get(a[o[i].x].x),y=get(a[o[i].x].y);
                 if (x==y) continue;
                 if (root[x]->s>root[y]->s) fa[y]=x,t.merge(root[x],root[y]);
                 else fa[x]=y,t.merge(root[y],root[x]);
             }else
             if (o[i].t=='Q'){
                 cnt++,ans+=(LL)t.kth(root[get(o[i].x)],o[i].k);
             }
             else
             if (o[i].t=='C') {
                 t.remove(root[x=get(o[i].x)],w[o[i].x]);
                 t.insert(root[x],o[i].k);
                 w[o[i].x]=o[i].k;
             }
         }
         printf("Case %d: %.6lf\n",++cas,1.0*ans/cnt);
     }
     ;
 }

[la P5031&hdu P3726] Graph and Queries的更多相关文章

  1. HDU 3726 Graph and Queries treap树

    题目来源:HDU 3726 Graph and Queries 题意:见白书 思路:刚学treap 參考白皮书 #include <cstdio> #include <cstring ...

  2. HDU 3726 Graph and Queries 平衡树+前向星+并查集+离线操作+逆向思维 数据结构大综合题

    Graph and Queries Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  3. HDU 3726 Graph and Queries (离线处理+splay tree)

    Graph and Queries Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  4. HDU 3726 Graph and Queries(平衡二叉树)(2010 Asia Tianjin Regional Contest)

    Description You are given an undirected graph with N vertexes and M edges. Every vertex in this grap ...

  5. LA - 5031 - Graph and Queries

    题意:一个N个点(编号从1开始),M条边的无向图(编号从1开始),有3种操作: D X:把编号为X的边删了: Q X K:查询编号为X的结点所在连通分量第K大的元素: C X V:将编号为X的结点的权 ...

  6. LA 5031 Graph and Queries —— Treap名次树

    离线做法,逆序执行操作,那么原本的删除边的操作变为加入边的操作,用名次树维护每一个连通分量的名次,加边操作即是连通分量合并操作,每次将结点数小的子树向结点数大的子树合并,那么单次合并复杂度O(n1lo ...

  7. hdu 5412 CRB and Queries

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5412 CRB and Queries Description There are $N$ boys i ...

  8. HDU 4034 Graph(Floyd变形——逆向判断)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4034 Problem Description Everyone knows how to calcu ...

  9. HDU 5412 CRB and Queries(区间第K大 树套树 按值建树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php? pid=5412 Problem Description There are N boys in CodeLan ...

随机推荐

  1. WebDriver与文件系统

    1.屏幕截屏操作:其接口函数是TakesScreenshot.该功能是在运行测试用例的过程中,需要验证某个元素的状态或者显示的数值时,可以将屏幕截取下来进行对比:或者在异常或者错误发生的时候将屏幕截取 ...

  2. (转载)Java Map中的Value值如何做到可以为任意类型的值

    转载地址:http://www.importnew.com/15556.html     如有侵权,请联系作者及时删除. 搬到我的博客来,有空细细品味,把玩. 本文由 ImportNew - shut ...

  3. Java 基础 IO

    一,前言 回想之前写过的程序,数据都是在内存中,一旦程序运行结束,这些数据都没有了,等下次再想使用这些数据,可是已经没有了.那怎么办呢?能不能把运算完的数据都保存下来,下次程序启动的时候,再把这些数据 ...

  4. Linux操作系统加固

    1. 账号和口令 1.1 禁用或删除无用账号 减少系统无用账号,降低安全风险. 操作步骤 使用命令 userdel <用户名> 删除不必要的账号. 使用命令 passwd -l <用 ...

  5. [LeetCode] 90.Subsets II tag: backtracking

    Given a collection of integers that might contain duplicates, nums, return all possible subsets (the ...

  6. tiny6410的启动参数

    bootargs=root=/dev/mtdblock2 rootfstype=yaffs2 init=/linuxrc console=ttySAC0,115200 bootcmd=nand led ...

  7. 软件工程实践小项目之模拟wc.exe的小程序

    github源码和工程文件地址:https://github.com/Jackchenyu/Word_counts/tree/smart 基本要求:要实现wc的基本功能即文件中字符数.单词数.行数的统 ...

  8. 知识点补充 set 深浅拷贝

    一 对前面知识点的补充 1.str中的join()方法是将列表转换成字符串 lst = ["韩雪","赵丽颖","黄渤","李连杰 ...

  9. 谷歌技术"三宝"之GFS

    题记:初学分布式文件系统,写篇博客加深点印象.GFS的特点是使用一堆廉价的商用计算机支撑大规模数据处理. 虽然"The Google File System " 是03年发表的老文 ...

  10. UI自动化(八)xpath

    由于最新版火狐不在支持FireBug等开发工具,可以通过https://ftp.mozilla.org/pub/firefox/releases/下载49版本以下的火狐就可以增加Firebug等扩展了 ...