传送门


这种无向图上从一个点乱走到另一个点的期望题目好几道与高斯消元有关

首先一个显然的贪心:期望经过次数越多,分配到的权值就要越小。

设$du_i$表示$i$的度,$f_i$表示点$i$的期望经过次数(我们认为经过表示需要从这个点走出去,所以$f_N=0$),考虑到一条边$(u,v)$经过次数的期望为$\frac{f_u}{du_u}+\frac{f_v}{du_v}$,我们只需要求出$f$数组就可以求出每一条边对应的期望经过次数了。

对于$f$数组,类似于$DP$,我们可以列出一系列式子:$f_u=\frac{1}{du_u}\sum\limits_{(u,v) \in e} f_v+[u==1]$(因为$1$号点是起点,所以需要$+1$),而$f_N=0$,也就是有$N$个未知数、$N$个方程,那么我们可以通过高斯消元得到每一个$f_u$,然后这道题就做完了qaq

 #include<bits/stdc++.h>
 #define ld long double
 #define eps 1e-10
 //This code is written by Itst
 using namespace std;

 inline int read(){
     ;
     ;
     char c = getchar();
     while(c != EOF && !isdigit(c)){
         if(c == '-')
             f = ;
         c = getchar();
     }
     while(c != EOF && isdigit(c)){
         a = (a << ) + (a << ) + (c ^ ');
         c = getchar();
     }
     return f ? -a : a;
 }

 ;
 ld gauss[MAXN][MAXN] , now[MAXN * MAXN] , ans;
 struct Edge{
     int end , upEd;
 }Ed[MAXN * MAXN * ];
 int N , M , cntEd , du[MAXN] , head[MAXN];

 inline void addEd(int a , int b){
     Ed[++cntEd].end = b;
     Ed[cntEd].upEd = head[a];
     head[a] = cntEd;
 }

 inline bool equal(ld a , ld b){
     return a - eps < b && a + eps > b;
 }

 bool cmp(ld a , ld b){
     return a > b;
 }

 int main(){
 #ifndef ONLINE_JUDGE
     freopen("3232.in" , "r" , stdin);
     //freopen("3232.out" , "w" , stdout);
 #endif
     N = read();
     M = read();
      ; i <= M ; ++i){
         int a = read() , b = read();
         addEd(a , b);
         addEd(b , a);
         ++du[a];
         ++du[b];
     }
      ; i < N ; ++i){
         gauss[i][i] = ;
         for(int j = head[i] ; j ; j = Ed[j].upEd)
             if(Ed[j].end != N)
                 gauss[i][Ed[j].end] = -1.0 / du[Ed[j].end];
     }
     gauss[][N + ] = ;
      ; i < N ; ++i){
         int j = i;
         ))
             ++j;
         if(j != i)
              ; ++k)
                 swap(gauss[i][i] , gauss[j][i]);
         while(++j <= N)
              , gauss[j][i]))
                  ; k >= i ; --k)
                     gauss[j][k] -= gauss[i][k] / gauss[i][i] * gauss[j][i];
     }
      ; i ; --i){
         gauss[i][N + ] /= gauss[i][i];
         gauss[i][i] = ;
          ; j ; --j)
              , gauss[j][i])){
                 gauss[j][N + ] -= gauss[j][i] * gauss[i][N + ];
                 gauss[j][i] = ;
             }
     }
      ; i <= cntEd ; i += ){
         now[(i + ) >> ] = gauss[Ed[i].end][N + ] / du[Ed[i].end] + gauss[Ed[i + ].end][N + ] / du[Ed[i + ].end];
     }
     sort(now +  , now + M +  , cmp);
      ; i <= M ; ++i)
         ans += i * now[i];
     printf("%.3Lf" , ans);
     ;
 }

Luogu3232 HNOI2013 游走 高斯消元、期望、贪心的更多相关文章

  1. BZOJ 3143 HNOI2013 游走 高斯消元 期望

    这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...

  2. bzoj 3143: [Hnoi2013]游走 高斯消元

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1026  Solved: 448[Submit][Status] ...

  3. BZOJ3143:[HNOI2013]游走(高斯消元)

    Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...

  4. 【BZOJ-3143】游走 高斯消元 + 概率期望

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2264  Solved: 987[Submit][Status] ...

  5. [HNOI2013][BZOJ3143] 游走 - 高斯消元

    题目描述 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边 ...

  6. 【BZOJ3143】【HNOI2013】游走 高斯消元

    题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3143 我们令$P_i$表示从第i号点出发的期望次数.则$P_n$显然为$0$. 对于$P ...

  7. 【xsy1201】 随机游走 高斯消元

    题目大意:你有一个$n*m$的网格(有边界),你从$(1,1)$开始随机游走,求走到$(n,m)$的期望步数. 数据范围:$n≤10$,$m≤1000$. 我们令 $f[i][j]$表示从$(1,1) ...

  8. HDU2262;Where is the canteen(高斯消元+期望)

    传送门 题意 给出一张图,LL从一个点等概率走到上下左右位置,询问LL从宿舍走到餐厅的步数期望 分析 该题是一道高斯消元+期望的题目 难点在于构造矩阵,我们发现以下结论 设某点走到餐厅的期望为Ek 1 ...

  9. [luogu3232 HNOI2013] 游走 (高斯消元 期望)

    传送门 题目描述 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等 ...

随机推荐

  1. jquery制作移动端菜单栏左右滑动

    //菜单栏滑动function move_scollX(){ var startPosition, endPosition, distanceX,distanceY; $(".left&qu ...

  2. mysql中的utf8mb4、utf8mb4_unicode_ci、utf8mb4_general_ci

    1.utf8与utf8mb4(utf8 most bytes 4) MySQL 5.5.3之后增加了utfmb4字符编码 支持BMP(Basic Multilingual Plane,基本多文种平面) ...

  3. MySQL修改编码为UTF-8无效果解决办法

    本来这是一件很简单的事,有很多博客里都有教程,但却足足花了我半天的时间才解决问题. 可能是因为我的MySQL安装时没有选择默认路径的原因,按照网上的教程修改了下图中的my.ini配置文件后编码并没有发 ...

  4. 弱符号__attribute__((weak))

    弱符号是什么? 弱符号: 若两个或两个以上全局符号(函数或变量名)名字一样,而其中之一声明为weak symbol(弱符号),则这些全局符号不会引发重定义错误.链接器会忽略弱符号,去使用普通的全局符号 ...

  5. [HDFS_add_3] HDFS 机架感知

    0. 说明  HDFS 副本存放策略 && 配置机架感知 1. HDFS 的副本存放策略 HDFS 的副本存放策略是将一个副本存放在本地机架节点上,另外两个副本放在不同机架的不同节点上 ...

  6. centos7执行umount提示:device is busy或者target is busy解决方法

    问题描述: 因为挂载错了,想取消挂载,但是umount报告如下错误: [root@zabbix /]# umount /dev/sdc1 umount: /data1: target is busy. ...

  7. 点击eclipse包报错

    每次只要新建一个package包,或者鼠标选择某个package包,系统就会提示:An error has occurred. See error log for more details. org/ ...

  8. January 02nd, 2018 Week 01st Tuesday

    I dream my painting, and then I paint my dream. 我梦见我的画,然后我画我的梦. It was a long time after I had a goo ...

  9. [转]mysql和redis的区别

    转自https://www.cnblogs.com/zxh1297/p/9394108.html 1.mysql和redis的数据库类型 mysql是关系型数据库,主要用于存放持久化数据,将数据存储在 ...

  10. transition: 0.2s all ease;

    /* 全部样式 0.2秒 缓动*/ transition: 0.2s all ease;