基于python的快速傅里叶变换FFT(二)
本文在上一篇博客的基础上进一步探究正弦函数及其FFT变换。

知识点
  FFT变换,其实就是快速离散傅里叶变换,傅立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。

  和傅立叶变换算法对应的是反傅立叶变换算法。该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。因此,可以说,傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅立叶反变换将这些频域信号转换成时域信号。

  假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是An=sqrt(a*a+b*b)(某点处的幅度值An = A*(N/2))

代码实现
包的安装步骤见上一篇博客。

y = sin(2*pi*fs*t);Fs=150Hz,fs=25Hz。具体代码如下:

import matplotlib.pyplot as plt
import numpy as np
import seaborn Fs = 150.0; # sampling rate采样率
Ts = 1.0/Fs; # sampling interval 采样区间
t = np.arange(0,1,Ts) # time vector,这里Ts也是步长 ff = 25; # frequency of the signal信号频率
y = np.sin(2*np.pi*ff*t) n = len(y) # length of the signal
k = np.arange(n)
T = n/Fs
frq = k/T # two sides frequency range
frq1 = frq[range(int(n/2))] # one side frequency range YY = np.fft.fft(y) # 未归一化
Y = np.fft.fft(y)/n # fft computing and normalization 归一化
Y1 = Y[range(int(n/2))] fig, ax = plt.subplots(4, 1) ax[0].plot(t,y)
ax[0].set_xlabel('Time')
ax[0].set_ylabel('Amplitude') ax[1].plot(frq,abs(YY),'r') # plotting the spectrum
ax[1].set_xlabel('Freq (Hz)')
ax[1].set_ylabel('|Y(freq)|') ax[2].plot(frq,abs(Y),'G') # plotting the spectrum
ax[2].set_xlabel('Freq (Hz)')
ax[2].set_ylabel('|Y(freq)|') ax[3].plot(frq1,abs(Y1),'B') # plotting the spectrum
ax[3].set_xlabel('Freq (Hz)')
ax[3].set_ylabel('|Y(freq)|') plt.show()

结果

结果验证

某点处的幅度值An = A*(N/2),A表示原始信号的幅值,N表示采样点。
1、原函数频率fs=25Hz,所以ts=1/25=0.04。与图中第一个波形相同。
2、已知A=1,N=150,由此可以计算出An=75。与图中第二个波形相同。
3、归一化幅度值=An/n=75/100=0.75。
---------------------
作者:赵至柔
来源:CSDN
原文:https://blog.csdn.net/qq_39516859/article/details/79770564
版权声明:本文为博主原创文章,转载请附上博文链接!

基于python的快速傅里叶变换FFT(二)的更多相关文章

  1. [学习笔记] 多项式与快速傅里叶变换(FFT)基础

    引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一 ...

  2. 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】

    原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...

  3. 快速傅里叶变换(FFT)

    扯 去北京学习的时候才系统的学习了一下卷积,当时整理了这个笔记的大部分.后来就一直放着忘了写完.直到今天都腊月二十八了,才想起来还有个FFT的笔记没整完呢.整理完这个我就假装今年的任务全都over了吧 ...

  4. 快速傅里叶变换FFT / NTT

    目录 FFT 系数表示法 点值表示法 复数 DFT(离散傅里叶变换) 单位根的性质 FFT(快速傅里叶变换) IFFT(快速傅里叶逆变换) NTT 阶 原根 扩展知识 FFT 参考blog: 十分简明 ...

  5. 快速傅里叶变换(FFT)学习笔记

    定义 多项式 系数表示法 设\(A(x)\)表示一个\(n-1\)次多项式,则所有项的系数组成的\(n\)维向量\((a_0,a_1,a_2,\dots,a_{n-1})\)唯一确定了这个多项式. 即 ...

  6. 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT)

    再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Blueste ...

  7. 快速傅里叶变换FFT

    多项式乘法 #include <cstdio> #include <cmath> #include <algorithm> #include <cstdlib ...

  8. 快速傅里叶变换FFT& 数论变换NTT

    相关知识 时间域上的函数f(t)经过傅里叶变换(Fourier Transform)变成频率域上的F(w),也就是用一些不同频率正弦曲线的加 权叠加得到时间域上的信号. \[ F(\omega)=\m ...

  9. 快速傅里叶变换(FFT)_转载

    FFTFFT·Fast  Fourier  TransformationFast  Fourier  Transformation快速傅立叶变换 P3803 [模板]多项式乘法(FFT) 参考上文 首 ...

随机推荐

  1. python lxml库生成xml文件-节点命名空间问题

    lxml库,处理xml很强大,官方文档:https://lxml.de/tutorial.html#namespaces 例如: 我们要生成如下格式的报文: <ttt:jesson xmlns: ...

  2. android UI:Fragment碎片

    碎片(Fragment) 嵌入与活动中的UI片段,为了合理的分配布局而存在,这是我的简单理解.多用于兼顾手机与平板的UI,也适用于灵活高级的UI制作. Demo 简单的按键切换两片不同的Demo 新建 ...

  3. django model数据 时间格式

    from datetime import datetime dt = datetime.now() print '时间:(%Y-%m-%d %H:%M:%S %f): ' , dt.strftime( ...

  4. 今天讲座的感悟--java

    发现当你擅长于某一专业,永远那专业上的人才挤挤.倘若你和相邻专业结合,就能更厉害的走在交叉专业上.例如:医学加计算机等 待续...

  5. 使用Sublime Text 2 和 MinGW 搭建C开发环境

    使用工具 Sublime Text 2(Download) MinGW(Download)或者使用CygWin(Download)亦可 1.配置环境变量 下载和安装Sublime Text 2和Min ...

  6. NIO Channel和Buffer

    Java NIO 由以下几个核心部分组成: Buffer Channel Selector 传统的IO操作面向数据流,意味着每次从流中读一个或多个字节,直至完成,数据没有被缓存在任何地方.NIO操作面 ...

  7. python机器学习笔记 ID3决策树算法实战

    前面学习了决策树的算法原理,这里继续对代码进行深入学习,并掌握ID3的算法实践过程. ID3算法是一种贪心算法,用来构造决策树,ID3算法起源于概念学习系统(CLS),以信息熵的下降速度为选取测试属性 ...

  8. 使用Pabot并行运行RF案例

    一.问题引入 在做接口自动化时随着案例增多,特别是流程类案例增多,特别是asp.net的webform类型的项目,再加上数据库校验也比较耗时,导致RF执行案例时间越来越长,就遇到这样一个问题,705个 ...

  9. C# Code First 配置(二)

    上一篇文章地址 C# Code First 配置 此文章主要介绍配置映射到表中的详细字段.信息等,如下: System.ComponentModel.DataAnnotations 包含的特性: At ...

  10. c#cookie读取写入操作

    public static void SetCookie(string cname, string value, int effective) { HttpCookie cookie = new Ht ...