Kalman Filter

Cons:

  • Kalman filtering is inadequate because it is based on the unimodal Gaussian distribution assumption, and it can’t represent simultaneous alternative hypotheses.

  • It works relatively poorly in clutter which causes the density to be multi-modal and therefore non- Gaussian.

Kalman filter is based on the single Gauss model, and different components have different effects on the Gauss distribution, as follows:

  • The deterministic component causes the density function to drift bodily.
  • The random component of the dynamical model leads to spreading—increasing uncertainty.
  • The effect of an external observation is to superimpose a reactive effect on the diffusion.

Particle Filter

The CONDENSATION Algorithm

At the top of the diagram, the output from time-step t -1 is the weighted sample-set. The aim is to maintain, at successive time-steps, sample sets of fixed size N.

  • The first operation is to sample N times from the set , choosing a given element with probability. Some elements, especially those with high weights, may be chosen several times, leading to identical copies of elements in the new set. Others with relatively low weights may not be chosen at all.

  • Each element chosen from the new set is now subjected to the predictive steps.First, an element undergoes drift and, since this is deterministic, identical elements in the new set undergo the same drift.
  • The second predictive step, diffusion, is random and identical elements now split because each undergoes its own independent motion step. At this stage, the sample set for the new time-step has been generated but, as yet, without its weights;
  • Finally, the observation step is applied, generating weights from the observation density.

Algorithm:

Color-based Particle Filter

Color histograms have many advantages for tracking non-rigid objects as they are robust to partial occlusion, are rotation and scale invariant and are calculated efficiently.

A target is tracked with a particle filter by comparing its histogram with the histograms of the sample positions using the Bhattacharyya distance.

Bhattacharyya distance:在统计学中,Bhattacharyya距离(以下称巴氏距离)测量的是两个离散或连续概率分布的相似性。计算方式和Bhattacharyya系数关系很密切。

Algorithm:

Kernel-based Particle Filter

A PF does not perform well when the dynamic system has a very small system noise or if the observation noise has very small variance. In these cases, the particle set quickly collapses to one single point in the state space.

The standard PF often fails to produce a particle set that captures the “irregular” motion, leading to gradually drifting estimates and ultimate loss of target.

to be done

A Boosted Particle Filter

The problem of tracking a varying number of non- rigid objects has two major difficulties:

  • First, the observation models and target distributions can be highly non-linear and non- Gaussian.
  • Second, the presence of a large, varying number of objects creates complex interactions with overlap and ambiguities.

Mixture particle filters and Adaboost:

An effective way is to combine mixture particle filters and Adaboost. The crucial issues in mixture particle filters are the choice of the proposal distribution and the treatment of objects leaving and entering the scene.

The mixture particle filter is ideally suited to multi-target tracking as it assigns a mixture component to each player. The proposal distribution can be constructed by using a mixture model that incorporates information from the dynamic models of each player and the detection hypotheses generated by Adaboost.

Methods:

  • Most multi-target tracking assumed a fixed number of objects.
  • BraMBLe has an automatic object detection system that relies on modeling a fixed background.
  • The authors will relax the assumption of a fixed background where the background changes.
  • Particle filters may perform poorly when the posterior is multimodal for multiple targets. Vermaak et al introduce a mixture particle filter (MPF), where each component is modelled with an individual particle filter. BPF is based on MPF.
  • The authors adopt a multi-color observation model based on Hue-Saturation-Value (HSV) color histograms.

The boosted particle filter introduces two important extensions of the MPF:

  • First, it uses Adaboost to construct the proposal distribution. It incorporates the recent observations in proposal distributions (through the Adaboost detections), and outperforms naive transition prior proposals considerably.
  • Second, Adaboost provides a mechanism for obtaining and maintaining the mixture representation. It allows us to detect objects leaving and entering the scene efficiently.

References

  • M. Isard and A. Blake. Condensation–conditional density propagation for visual tracking. Int. J. Computer Vision, 29(1):5– 28, 1998.
  • S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking,” IEEE Transactions on Signal Processing, vol. 50, pp. 174–188, Feb. 2002.
  • K. Nummiaroa, E. Koller-Meierb, L. V. Gool, “An adaptive color- based particle filter”, Image and Vision Computing 21 (2003) 99– 110.
  • C.Chang, and R. Ansari, “Kernel Particle Filter for Visual Tracking”, IEEE SIGNAL PROCESSING LETTERS, VOL. 12, NO. 3, pp242-245, 2005.
  • K. Okuma, et al., “A Boosted Particle Filter: Multitarget Detection and Tracking”, ECCV 2004 (2004), pp. 28-39.

Particle filter for visual tracking的更多相关文章

  1. Correlation Filter in Visual Tracking系列二:Fast Visual Tracking via Dense Spatio-Temporal Context Learning 论文笔记

    原文再续,书接一上回.话说上一次我们讲到了Correlation Filter类 tracker的老祖宗MOSSE,那么接下来就让我们看看如何对其进一步地优化改良.这次要谈的论文是我们国内Zhang ...

  2. Correlation Filter in Visual Tracking系列一:Visual Object Tracking using Adaptive Correlation Filters 论文笔记

    Visual Object Tracking using Adaptive Correlation Filters 一文发表于2010的CVPR上,是笔者所知的第一篇将correlation filt ...

  3. Correlation Filter in Visual Tracking

    涉及两篇论文:Visual Object Tracking using Adaptive Correlation Filters 和Fast Visual Tracking via Dense Spa ...

  4. Summary on Visual Tracking: Paper List, Benchmarks and Top Groups

    Summary on Visual Tracking: Paper List, Benchmarks and Top Groups 2018-07-26 10:32:15 This blog is c ...

  5. 基于粒子滤波的物体跟踪 Particle Filter Object Tracking

    Video来源地址 一直都觉得粒子滤波是个挺牛的东西,每次试图看文献都被复杂的数学符号搞得看不下去.一个偶然的机会发现了Rob Hess(http://web.engr.oregonstate.edu ...

  6. 论文笔记:Attentional Correlation Filter Network for Adaptive Visual Tracking

    Attentional Correlation Filter Network for Adaptive Visual Tracking CVPR2017 摘要:本文提出一种新的带有注意机制的跟踪框架, ...

  7. Resources in Visual Tracking

    这个应该是目前最全的Tracking相关的文章了 一.Surveyand benchmark: 1.      PAMI2014:VisualTracking_ An Experimental Sur ...

  8. (转)CVPR 2016 Visual Tracking Paper Review

    CVPR 2016 Visual Tracking Paper Review  本文摘自:http://blog.csdn.net/ben_ben_niao/article/details/52072 ...

  9. 论文笔记之: Hierarchical Convolutional Features for Visual Tracking

    Hierarchical Convolutional Features for Visual Tracking  ICCV 2015 摘要:跟卢湖川的那个文章一样,本文也是利用深度学习各个 layer ...

随机推荐

  1. Tomcat 访问页面或服务器异常,请检查这些方面

    若还没有部署网站,请检查 防火墙是否关闭 数据库服务是否打开 浏览器访问的地址和端口是否正确 tomcat 配置文件中的端口是否发生冲突,换一个试试 若出现的是"拒绝连接",检查阿 ...

  2. 跨域访问的解决方案(非HTML5的方法:JSONP)

    http://supercharles888.blog.51cto.com/609344/856886 跨域访问一直是困扰很多开发者的问题之一.因为涉及到安全性问题,所以跨域访问默认是不可以进行的,否 ...

  3. el-table表格标题换行

    在做一些管理后台的项目中,表格时最常见的,当有时数据字段多时往往会用滚动条,但从用户体验角度讲,肯定需要多展示信息,那么可能需要一个单元格放多个字段,这时候表头就需要换行. 具体实现如下: // 注意 ...

  4. Tensorflow张量

    张量常规解释 张量(tensor)理论是数学的一个分支学科,在力学中有重要应用.张量这一术语起源于力学,它最初是用来表示弹性介质中各点应力状态的,后来张量理论发展成为力学和物理学的一个有力的数学工具. ...

  5. Qt 编程指南10 QImage Mat QPixmap转换

      //示例 pushButtonOpenPicBig按钮clicked单击动作触发 void Qt_Window::on_pushButtonOpenPicBig_clicked() { strin ...

  6. 深入springboot原理——动手封装一个starter

    从上一篇文章<深入springboot原理——一步步分析springboot启动机制(starter机制)> 我们已经知道springboot的起步依赖与自动配置的机制.spring-bo ...

  7. MongoDB可视化工具--Robo 3T 使用教程

    MongoDB可视化工具--Robo 3T 使用教程 1. 到官网下载Robo 3T,网址如: https://robomongo.org/download. 2. 下载安装成功后,打开后点击左上角的 ...

  8. java中使用阻塞队列实现生产这与消费这之间的关系

    需求如下: 有一个生产者和一个消费者,生产者不断的生产产品,消费这不断的消费产品.产品总数为N. 1.生产顺序按队列的方式,先进先出. 2.生产者和消费这可以同时进行. 3.当生产者生产了N个产品后不 ...

  9. Android中AsyncTask的使用

    原文 https://blog.csdn.net/liuhe688/article/details/6532519 在Android中实现异步任务机制有两种方式,Handler和AsyncTask. ...

  10. CF662C Binary Table FWT

    传送门 \(N \leq 20\)很小诶 一个暴力的思路是枚举行的翻转状态然后在列上贪心 复杂度为\(O(2^NM)\)显然过不去 考虑到可能有若干列的初始状态是一样的,那么在任意反转之后他们贪心的策 ...