Kalman Filter

Cons:

  • Kalman filtering is inadequate because it is based on the unimodal Gaussian distribution assumption, and it can’t represent simultaneous alternative hypotheses.

  • It works relatively poorly in clutter which causes the density to be multi-modal and therefore non- Gaussian.

Kalman filter is based on the single Gauss model, and different components have different effects on the Gauss distribution, as follows:

  • The deterministic component causes the density function to drift bodily.
  • The random component of the dynamical model leads to spreading—increasing uncertainty.
  • The effect of an external observation is to superimpose a reactive effect on the diffusion.

Particle Filter

The CONDENSATION Algorithm

At the top of the diagram, the output from time-step t -1 is the weighted sample-set. The aim is to maintain, at successive time-steps, sample sets of fixed size N.

  • The first operation is to sample N times from the set , choosing a given element with probability. Some elements, especially those with high weights, may be chosen several times, leading to identical copies of elements in the new set. Others with relatively low weights may not be chosen at all.

  • Each element chosen from the new set is now subjected to the predictive steps.First, an element undergoes drift and, since this is deterministic, identical elements in the new set undergo the same drift.
  • The second predictive step, diffusion, is random and identical elements now split because each undergoes its own independent motion step. At this stage, the sample set for the new time-step has been generated but, as yet, without its weights;
  • Finally, the observation step is applied, generating weights from the observation density.

Algorithm:

Color-based Particle Filter

Color histograms have many advantages for tracking non-rigid objects as they are robust to partial occlusion, are rotation and scale invariant and are calculated efficiently.

A target is tracked with a particle filter by comparing its histogram with the histograms of the sample positions using the Bhattacharyya distance.

Bhattacharyya distance:在统计学中,Bhattacharyya距离(以下称巴氏距离)测量的是两个离散或连续概率分布的相似性。计算方式和Bhattacharyya系数关系很密切。

Algorithm:

Kernel-based Particle Filter

A PF does not perform well when the dynamic system has a very small system noise or if the observation noise has very small variance. In these cases, the particle set quickly collapses to one single point in the state space.

The standard PF often fails to produce a particle set that captures the “irregular” motion, leading to gradually drifting estimates and ultimate loss of target.

to be done

A Boosted Particle Filter

The problem of tracking a varying number of non- rigid objects has two major difficulties:

  • First, the observation models and target distributions can be highly non-linear and non- Gaussian.
  • Second, the presence of a large, varying number of objects creates complex interactions with overlap and ambiguities.

Mixture particle filters and Adaboost:

An effective way is to combine mixture particle filters and Adaboost. The crucial issues in mixture particle filters are the choice of the proposal distribution and the treatment of objects leaving and entering the scene.

The mixture particle filter is ideally suited to multi-target tracking as it assigns a mixture component to each player. The proposal distribution can be constructed by using a mixture model that incorporates information from the dynamic models of each player and the detection hypotheses generated by Adaboost.

Methods:

  • Most multi-target tracking assumed a fixed number of objects.
  • BraMBLe has an automatic object detection system that relies on modeling a fixed background.
  • The authors will relax the assumption of a fixed background where the background changes.
  • Particle filters may perform poorly when the posterior is multimodal for multiple targets. Vermaak et al introduce a mixture particle filter (MPF), where each component is modelled with an individual particle filter. BPF is based on MPF.
  • The authors adopt a multi-color observation model based on Hue-Saturation-Value (HSV) color histograms.

The boosted particle filter introduces two important extensions of the MPF:

  • First, it uses Adaboost to construct the proposal distribution. It incorporates the recent observations in proposal distributions (through the Adaboost detections), and outperforms naive transition prior proposals considerably.
  • Second, Adaboost provides a mechanism for obtaining and maintaining the mixture representation. It allows us to detect objects leaving and entering the scene efficiently.

References

  • M. Isard and A. Blake. Condensation–conditional density propagation for visual tracking. Int. J. Computer Vision, 29(1):5– 28, 1998.
  • S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking,” IEEE Transactions on Signal Processing, vol. 50, pp. 174–188, Feb. 2002.
  • K. Nummiaroa, E. Koller-Meierb, L. V. Gool, “An adaptive color- based particle filter”, Image and Vision Computing 21 (2003) 99– 110.
  • C.Chang, and R. Ansari, “Kernel Particle Filter for Visual Tracking”, IEEE SIGNAL PROCESSING LETTERS, VOL. 12, NO. 3, pp242-245, 2005.
  • K. Okuma, et al., “A Boosted Particle Filter: Multitarget Detection and Tracking”, ECCV 2004 (2004), pp. 28-39.

Particle filter for visual tracking的更多相关文章

  1. Correlation Filter in Visual Tracking系列二:Fast Visual Tracking via Dense Spatio-Temporal Context Learning 论文笔记

    原文再续,书接一上回.话说上一次我们讲到了Correlation Filter类 tracker的老祖宗MOSSE,那么接下来就让我们看看如何对其进一步地优化改良.这次要谈的论文是我们国内Zhang ...

  2. Correlation Filter in Visual Tracking系列一:Visual Object Tracking using Adaptive Correlation Filters 论文笔记

    Visual Object Tracking using Adaptive Correlation Filters 一文发表于2010的CVPR上,是笔者所知的第一篇将correlation filt ...

  3. Correlation Filter in Visual Tracking

    涉及两篇论文:Visual Object Tracking using Adaptive Correlation Filters 和Fast Visual Tracking via Dense Spa ...

  4. Summary on Visual Tracking: Paper List, Benchmarks and Top Groups

    Summary on Visual Tracking: Paper List, Benchmarks and Top Groups 2018-07-26 10:32:15 This blog is c ...

  5. 基于粒子滤波的物体跟踪 Particle Filter Object Tracking

    Video来源地址 一直都觉得粒子滤波是个挺牛的东西,每次试图看文献都被复杂的数学符号搞得看不下去.一个偶然的机会发现了Rob Hess(http://web.engr.oregonstate.edu ...

  6. 论文笔记:Attentional Correlation Filter Network for Adaptive Visual Tracking

    Attentional Correlation Filter Network for Adaptive Visual Tracking CVPR2017 摘要:本文提出一种新的带有注意机制的跟踪框架, ...

  7. Resources in Visual Tracking

    这个应该是目前最全的Tracking相关的文章了 一.Surveyand benchmark: 1.      PAMI2014:VisualTracking_ An Experimental Sur ...

  8. (转)CVPR 2016 Visual Tracking Paper Review

    CVPR 2016 Visual Tracking Paper Review  本文摘自:http://blog.csdn.net/ben_ben_niao/article/details/52072 ...

  9. 论文笔记之: Hierarchical Convolutional Features for Visual Tracking

    Hierarchical Convolutional Features for Visual Tracking  ICCV 2015 摘要:跟卢湖川的那个文章一样,本文也是利用深度学习各个 layer ...

随机推荐

  1. Python3中PyMongo的用法

    MongoDB存储 在这里我们来看一下Python3下MongoDB的存储操作,在本节开始之前请确保你已经安装好了MongoDB并启动了其服务,另外安装好了Python的PyMongo库. 连接Mon ...

  2. lamp环境安装

    每天学习一点点 编程PDF电子书免费下载: http://www.shitanlife.com/code lamp环境安装 1.查看mysql是否安装 service mysql status 2.查 ...

  3. Spring 注解大全

    @Autowired 自动注入 (存在多个可注入Bean时,通过 @Qualifier 指定)@Resource 与@Autowired作用相同@Repository 只能标注在 DAO 类上.该注解 ...

  4. Python调用WIN10语音交互+识别+控制+自定义对话

    1 安装库文件 2修改两个地方 最简单的 # 将输入文字转化为语音信号输出 import speech while True: speech.say("请输入:") str = i ...

  5. go标准库的学习-crypto/des

    参考:https://studygolang.com/pkgdoc 导入方式: import "crypto/des" des包实现了DES标准和TDEA算法,参见U.S. Fed ...

  6. oracle远程物化视图

    一.创建远程物化视图日志 源端: CREATE MATERIALIZED VIEW LOG ON tozwdb.test tablespace tozwdb_data WITH ROWID; 二.付权 ...

  7. 图解IIS8上解决网站第一次访问慢的处理(转载)

    本篇经验以IIS8,Windows Server 2012R2做为案例.IIS8 运行在 Windows Server 2012 and Windows 8 版本以上的平台上.IIS中应用程序池和网站 ...

  8. OpenStack报错:MessagingTimeout: Timed out waiting for a reply to message ID

    L3.agent中出现大量消息超时错误,对网络的操作各种异常. 报错如下: -- :: ERROR neutron.agent.l3.agent [req-db9207e6--4f23-8c19-0d ...

  9. mac安装CocoaPods遇到的问题及解决办法

    (1)sudo gem install cocoapods Fetching: i18n-0.7.0.gem (100%) Successfully installed i18n-0.7.0 Fetc ...

  10. BootStrap学习(5)_多媒体对象&列表组

    一.多媒体对象 这些抽象的对象样式用于创建各种类型的组件(比如:博客评论),我们可以在组件中使用图文混排,图像可以左对齐或者右对齐.媒体对象可以用更少的代码来实现媒体对象与文字的混排. .media: ...