【ML】ICLR2016_Delving Deeper into Convolutional Networks
ICLR2016_DELVING DEEPER INTO CONVOLUTIONAL NETWORKS
Note here: Ballas recently proposed a novel framework on learning video representation, following is the review note after reading his paper.
Link: http://arxiv.org/pdf/1511.06432v4.pdf
[Brief introduction to some neural networks]
CNN: excellent in static image classification
RNN: can understand temporal sequences in various learning tasks
(however, with exploding or vanishing weights problem)
---> LSTM/GRU are proposed to avoid this problem
RCN: leverage properties from both CNN and RNN, use CNN top level feature map as input of RNN, it has recently introduced to learn video representations.
[Video reprensentation]
Mmotivation:
Adopt RCN as basic model.
- Top-level feature map presents high sementic features, namely the spatial naunces are ignored after pooling.
- However, frame-to-frame temporal variation is known to be smooth, which is the key for action recognition from videos.
(we need a new model to adapt this problem)
[Proposed models]
GRU-RCN:
- replace recurrent units in RCN with GRU.

(z: activation gate, decides to what degree previous hidden state would contribute to the next hidden state)
(r: reset gate, decides whether or not last hidden state should be propagated into next state)
(~h: candidate hidden state, it'll pass through the activatin gate)
(h: final hidden state)

Problems:
- number of parameters in fully-connected layer is huge due to size of conv map.
- fully-connected layers break the spatial structure of conv map.
Trick:
- replace the fully-connected units in GRU with convolution operations, which can keep spatial structure and reduce number of parameters meanwhile.
Intuition:
- we can see the propagation of hidden states as a process of convolution.
if so, the next hidden state percepts spatial structure of all the previous states. as the sequence goes further, the receptive field on previous states are larger, and we only get a general concept of frames in the beginning.
- compare to our cognition system, it does make sense!
Stacked GRU-RCN:
- it applies L GRU-RCNs independently on each convolutional map.
- tile up L GRU-RCNs.
- feed L final time-step hidden states into a classifier.


【ML】ICLR2016_Delving Deeper into Convolutional Networks的更多相关文章
- 【ML】Two-Stream Convolutional Networks for Action Recognition in Videos
Two-Stream Convolutional Networks for Action Recognition in Videos & Towards Good Practices for ...
- 【论文笔记】Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition
Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition 2018-01-28 15:4 ...
- 【ML】Predict and Constrain: Modeling Cardinality in Deep Structured Prediction -预测和约束:在深度结构化预测中建模基数
[论文标题]Predict and Constrain: Modeling Cardinality in Deep Structured Prediction (35th-ICML,PMLR) [ ...
- 【网络结构可视化】Visualizing and Understanding Convolutional Networks(ZF-Net) 论文解析
目录 0. 论文地址 1. 概述 2. 可视化结构 2.1 Unpooling 2.2 Rectification: 2.3 Filtering: 3. Feature Visualization 4 ...
- 【转载】 卷积神经网络(Convolutional Neural Network,CNN)
作者:wuliytTaotao 出处:https://www.cnblogs.com/wuliytTaotao/ 本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可,欢迎 ...
- 【翻译】给初学者的 Neural Networks / 神经网络 介绍
本文翻译自 SATYA MALLICK 的 "Neural Networks : A 30,000 Feet View for Beginners" 原文链接: https:// ...
- 【ML】从特征分解,奇异值分解到主成分分析
1.理解特征值,特征向量 一个对角阵\(A\),用它做变换时,自然坐标系的坐标轴不会发生旋转变化,而只会发生伸缩,且伸缩的比例就是\(A\)中对角线对应的数值大小. 对于普通矩阵\(A\)来说,是不是 ...
- 【ML】ICML2015_Unsupervised Learning of Video Representations using LSTMs
Unsupervised Learning of Video Representations using LSTMs Note here: it's a learning notes on new L ...
- 【ML】人脸识别
https://github.com/colipso/face_recognition https://medium.com/@ageitgey/machine-learning-is-fun-par ...
随机推荐
- 【Beta Scrum】冲刺! 1/5
0. Alpha阶段遗留问题 项目 功能/页面 功能/页面 WEB端 图片在线编辑 文件上传跨域问题 app端 作业展示页面 1. Beta计划表 功能 说明 web端 登录 完成web端登录页面及功 ...
- hadoop系列 第三坑: Task process exit with nonzero status of 137
跑MR的时候抛出异常: java.lang.Throwable: Child Error at org.apache.hadoop.mapred.TaskRunner.run(TaskRunner.j ...
- java.lang.NoClassDefFoundError: org/eclipse/core/resources/IContainer
启动eclipse报错:java.lang.NoClassDefFoundError: org/eclipse/core/resources/IContainer 解决办法: 删除以下文件.metad ...
- Scout YYF I POJ - 3744(矩阵优化)
题意:一条路上有n个地雷,给出地雷的位置.某人从起点(位置1)出发,走一步的概率是p,走两步的概率是(1-p),然后问有多少概率走过这个雷区. 思路: 只要走过最后一个地雷就代表走过雷区了. 而每到 ...
- M100 对频
- Apache Ant安装 验证
1.下载Apache Ant 去官网下载ant,官网地址:http://ant.apache.org/ 我下载的是apache-ant-1.10.1-bin.zip 直接解压,放到制定目录下,如C:\ ...
- day16 Python filter函数
前戏 movie_people = ["alex","charon","pluto","liu","sb&qu ...
- wordpress之插件安装和主题安装(包含常见问题)
问题描述:安装WordPress主题及插件需要输入FTP问题,要执行请求的操作,WordPress需要访问您网页服务器的权限.请输入您的FTP登陆凭据以继续 执行如下两条命令即可安装成功: sudo ...
- POJ1251(Kruskal水题)
https://vjudge.net/problem/POJ-1251 The Head Elder of the tropical island of Lagrishan has a problem ...
- VS2017 安装visualSVN 6.1.1 for visual studio 2017
1.官网下载地址:https://www.visualsvn.com/visualsvn/download/ 2.安装