【ML】ICLR2016_Delving Deeper into Convolutional Networks
ICLR2016_DELVING DEEPER INTO CONVOLUTIONAL NETWORKS
Note here: Ballas recently proposed a novel framework on learning video representation, following is the review note after reading his paper.
Link: http://arxiv.org/pdf/1511.06432v4.pdf
[Brief introduction to some neural networks]
CNN: excellent in static image classification
RNN: can understand temporal sequences in various learning tasks
(however, with exploding or vanishing weights problem)
---> LSTM/GRU are proposed to avoid this problem
RCN: leverage properties from both CNN and RNN, use CNN top level feature map as input of RNN, it has recently introduced to learn video representations.
[Video reprensentation]
Mmotivation:
Adopt RCN as basic model.
- Top-level feature map presents high sementic features, namely the spatial naunces are ignored after pooling.
- However, frame-to-frame temporal variation is known to be smooth, which is the key for action recognition from videos.
(we need a new model to adapt this problem)
[Proposed models]
GRU-RCN:
- replace recurrent units in RCN with GRU.
(z: activation gate, decides to what degree previous hidden state would contribute to the next hidden state)
(r: reset gate, decides whether or not last hidden state should be propagated into next state)
(~h: candidate hidden state, it'll pass through the activatin gate)
(h: final hidden state)
Problems:
- number of parameters in fully-connected layer is huge due to size of conv map.
- fully-connected layers break the spatial structure of conv map.
Trick:
- replace the fully-connected units in GRU with convolution operations, which can keep spatial structure and reduce number of parameters meanwhile.
Intuition:
- we can see the propagation of hidden states as a process of convolution.
if so, the next hidden state percepts spatial structure of all the previous states. as the sequence goes further, the receptive field on previous states are larger, and we only get a general concept of frames in the beginning.
- compare to our cognition system, it does make sense!
Stacked GRU-RCN:
- it applies L GRU-RCNs independently on each convolutional map.
- tile up L GRU-RCNs.
- feed L final time-step hidden states into a classifier.
【ML】ICLR2016_Delving Deeper into Convolutional Networks的更多相关文章
- 【ML】Two-Stream Convolutional Networks for Action Recognition in Videos
Two-Stream Convolutional Networks for Action Recognition in Videos & Towards Good Practices for ...
- 【论文笔记】Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition
Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition 2018-01-28 15:4 ...
- 【ML】Predict and Constrain: Modeling Cardinality in Deep Structured Prediction -预测和约束:在深度结构化预测中建模基数
[论文标题]Predict and Constrain: Modeling Cardinality in Deep Structured Prediction (35th-ICML,PMLR) [ ...
- 【网络结构可视化】Visualizing and Understanding Convolutional Networks(ZF-Net) 论文解析
目录 0. 论文地址 1. 概述 2. 可视化结构 2.1 Unpooling 2.2 Rectification: 2.3 Filtering: 3. Feature Visualization 4 ...
- 【转载】 卷积神经网络(Convolutional Neural Network,CNN)
作者:wuliytTaotao 出处:https://www.cnblogs.com/wuliytTaotao/ 本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可,欢迎 ...
- 【翻译】给初学者的 Neural Networks / 神经网络 介绍
本文翻译自 SATYA MALLICK 的 "Neural Networks : A 30,000 Feet View for Beginners" 原文链接: https:// ...
- 【ML】从特征分解,奇异值分解到主成分分析
1.理解特征值,特征向量 一个对角阵\(A\),用它做变换时,自然坐标系的坐标轴不会发生旋转变化,而只会发生伸缩,且伸缩的比例就是\(A\)中对角线对应的数值大小. 对于普通矩阵\(A\)来说,是不是 ...
- 【ML】ICML2015_Unsupervised Learning of Video Representations using LSTMs
Unsupervised Learning of Video Representations using LSTMs Note here: it's a learning notes on new L ...
- 【ML】人脸识别
https://github.com/colipso/face_recognition https://medium.com/@ageitgey/machine-learning-is-fun-par ...
随机推荐
- KVM网络桥接模式解说
在上一篇博客中,我画了一张图来解说桥接模式下kvm的网络是什么样子的.那今天我就仔细来解释一下这方面的内容,让大家学会配置桥接网络. 还是这样的一张图,我们知道bridge就是桥接网卡的名称.让虚拟机 ...
- Decentraleyes - Local emulation of Content Delivery Networks
Decentraleyes, 是一个本地化第三方库文件的浏览器插件,提供三十多种语言支持.大致原理如下: 保存常用的第三方库文件到本地,当打开的页面中需要加载的第三方库文件在本地有副本时,随即进行拦截 ...
- Handler实现线程间的通信2
与Handler实现线程间的通信1反过来MainThread中向WorkerThread中发送消息
- Node.js webpack Vue-CLI --安装
Node.js 安装 从官网 下载 安装 Node.js 官网 Node.js 官方文档 cmd 命令 node -v 查看版本号 v10.15.0 npm 包管理工具 npm 是JavaScript ...
- 基于Redis实现的抢购代码示例
示例代码是基于博客 https://blog.csdn.net/qq1013598664/article/details/70183908的错误案例修改而来,如果有问题望多多指点,错误代码可以去原文查 ...
- win10下SVN图标不显示
win10系统的SVN图标不现实了.正常情况下,会在文件夹上有一个对勾 但是对勾以及所有的SVN图标都突然消失了,都不知道文件什么状态了. 经过一通搜索,发现问题所在(都指向注册表图标被占用).原因就 ...
- 课程设计小组报告——基于ARM实验箱的捕鱼游戏的设计与实现
课程设计小组报告--基于ARM实验箱的捕鱼游戏的设计与实现 一.任务简介 1.1 任务内容 捕鱼游戏这个项目是一个娱乐性的游戏开发,该游戏可以给人们带来娱乐的同时还可以给人感官上的享受,所以很受人们的 ...
- 【opatch打补丁】oracle10.2.0.5.0升级10.2.0.5.9 for linux
https://wenku.baidu.com/view/c38702b56edb6f1afe001f59.html 这篇文章也不错,可参考 任务:oracle 10.2.0.5.0 打补丁升级 ...
- 20175310 《Java程序设计》第3周学习总结
20175310<Java程序设计>第3周学习总结 教材学习内容总结 本周学习了第四章的内容,相比前三章来说,第四章内容较多而且比较复杂,花了大量的时间学习.学习的主要内容如下: 类.方法 ...
- Android逆向学习资料
Android逆向基础之Dalvik虚拟机: https://lyxw.github.io/archivers/Android%E9%80%86%E5%90%91%E5%9F%BA%E7%A1%80% ...