Problem Description
When God made the first man, he put him on a beautiful garden, the Garden of Eden. Here Adam lived with all animals. God gave Adam eternal life. But Adam was lonely in the garden, so God made Eve. When Adam was asleep one night, God took a rib from him and made Eve beside him. God said to them, “here in the Garden, you can do everything, but you cannot eat apples from the tree of knowledge.”
One day, Satan came to the garden. He changed into a snake and went to live in the tree of knowledge. When Eve came near the tree someday, the snake called her. He gave her an apple and persuaded her to eat it. Eve took a bite, and then she took the apple to Adam. And Adam ate it, too. Finally, they were driven out by God and began a hard journey of life.
The above is the story we are familiar with. But we imagine that Satan love knowledge more than doing bad things. In Garden of Eden, the tree of knowledge has n apples, and there are k varieties of apples on the tree. Satan wants to eat all kinds of apple to gets all kinds of knowledge.So he chooses a starting point in the tree,and starts walking along the edges of tree,and finally stops at a point in the tree(starting point and end point may be same).The same point can only be passed once.He wants to know how many different kinds of schemes he can choose to eat all kinds of apple. Two schemes are different when their starting points are different or ending points are different.
 
Input
There are several cases.Process till end of input.
For each case, the first line contains two integers n and k, denoting the number of apples on the tree and number of kinds of apple on the tree respectively.
The second line contains n integers meaning the type of the i-th apple. Types are represented by integers between 1 and k .
Each of the following n-1 lines contains two integers u and v,meaning there is one edge between u and v.1≤n≤50000, 1≤k≤10
 
Output
For each case output your answer on a single line.
 
Sample Input
3 2
1 2 2
1 2
1 3
 
Sample Output
6
题意
给你一棵树,每个点的颜色,问有多少点对满足路径上的所以点颜色数为K。
题解
点分治,把模板的dfsdis改成状态。
代码
 #include<stdio.h>
#include<string.h>
#include<vector>
#include<algorithm>
using namespace std; #define LL long long
const int maxn=5e4+; vector<int>G[maxn];
int n,k,sumk,a[maxn],p[];
int mx[maxn],size[maxn],vis[maxn],dis[maxn],MIN,num[],cnt,root;
LL ans;
void init()
{
sumk=(<<k)-;
ans=;
for(int i=;i<=n;i++)
{
G[i].clear();
vis[i]=;
}
}
void dfssize(int u,int fa)
{
size[u]=;
mx[u]=;
for(int i=;i<G[u].size();i++)
{
int v=G[u][i];
if(!vis[v]&&v!=fa)
{
dfssize(v,u);
size[u]+=size[v];
mx[u]=max(mx[u],size[v]);
}
}
}
void dfsroot(int r,int u,int fa)
{
if(size[r]-size[u]>mx[u])mx[u]=size[r]-size[u];
if(mx[u]<MIN)MIN=mx[u],root=u;
for(int i=;i<G[u].size();i++)
{
int v=G[u][i];
if(!vis[v]&&v!=fa)dfsroot(r,v,u);
}
}
void dfsdis(int u,int fa,int sta)
{
dis[cnt++]=sta;
num[sta]++;
for(int i=;i<G[u].size();i++)
{
int v=G[u][i];
if(!vis[v]&&v!=fa)
dfsdis(v,u,sta|a[v]);
}
}
LL cal(int r,int sta)
{
cnt=;
memset(num,,sizeof num);
dfsdis(r,r,sta);
for(int i=;i<k;i++)
for(int j=sumk;j>=;j--)
if(!(p[i]&j))
num[j]+=num[j|p[i]];
LL ret=;
for(int i=;i<cnt;i++)ret+=num[sumk^dis[i]];
return ret;
}
void dfs(int u)
{
MIN=n;
dfssize(u,u);
dfsroot(u,u,u);
int Grivate=root;
ans+=cal(Grivate,a[Grivate]);
vis[root]=;
for(int i=;i<G[Grivate].size();i++)
{
int v=G[Grivate][i];
if(!vis[v])
{
ans-=cal(v,a[v]|a[Grivate]);
dfs(v);
}
}
}
int main()
{
p[]=;
for(int i=;i<=;i++)p[i]=p[i-]*;
while(scanf("%d%d",&n,&k)!=EOF)
{
init();
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
a[i]=p[a[i]-];
}
int u,v;
for(int i=;i<n;i++)
{
scanf("%d%d",&u,&v);
G[u].push_back(v);
G[v].push_back(u);
}
dfs();
printf("%lld\n",ans);
}
return ;
}

HDU 5977 Garden of Eden(点分治求点对路径颜色数为K)的更多相关文章

  1. HDU 5977 Garden of Eden (树分治+状态压缩)

    题意:给一棵节点数为n,节点种类为k的无根树,问其中有多少种不同的简单路径,可以满足路径上经过所有k种类型的点? 析:对于路径,就是两类,第一种情况,就是跨过根结点,第二种是不跨过根结点,分别讨论就好 ...

  2. hdu 5977 Garden of Eden(点分治+状压)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5977 题解:这题一看就知道是状压dp然后看了一下很像是点分治(有点明显)然后就是简单的点分治+状压dp ...

  3. HDU 5977 Garden of Eden (树形dp+快速沃尔什变换FWT)

    CGZ大佬提醒我,我要是再不更博客可就连一月一更的频率也没有了... emmm,正好做了一道有点意思的题,就拿出来充数吧=.= 题意 一棵树,有 $ n (n\leq50000) $ 个节点,每个点都 ...

  4. HDU - 5977 Garden of Eden (树形dp+容斥)

    题意:一棵树上有n(n<=50000)个结点,结点有k(k<=10)种颜色,问树上总共有多少条包含所有颜色的路径. 我最初的想法是树形状压dp,设dp[u][S]为以结点u为根的包含颜色集 ...

  5. HDU 5977 Garden of Eden

    题解: 路径统计比较容易想到点分治和dp dp的话是f[i][j]表示以i为根,取了i,颜色数状态为j的方案数 但是转移这里如果暴力转移就是$(2^k)^2$了 于是用FWT优化集合或 另外http: ...

  6. hdu-5977 Garden of Eden(树分治)

    题目链接: Garden of Eden Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/ ...

  7. HDU-5977 - Garden of Eden 点分治

    HDU - 5977 题意: 给定一颗树,问树上有多少节点对,节点对间包括了所有K种苹果. 思路: 点分治,对于每个节点记录从根节点到这个节点包含的所有情况,类似状压,因为K<=10.然后处理每 ...

  8. HDU 1007:Quoit Design(分治求最近点对)

    http://acm.hdu.edu.cn/showproblem.php?pid=1007 题意:平面上有n个点,问最近的两个点之间的距离的一半是多少. 思路:用分治做.把整体分为左右两个部分,那么 ...

  9. HDU5977 Garden of Eden(树的点分治)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5977 Description When God made the first man, he ...

随机推荐

  1. Kali安装虚拟机遇到的问题

    1.上官网下载了最新版的VMware 14.0版,安装的时候下一步下一步就是了. 2.最新版的官网激活码 FF590-2DX83-M81LZ-XDM7E-MKUT4 CG54H-D8D0H-H8DHY ...

  2. FlexRay笔记

    1.FlexRay具有高速.可靠及安全的特点.FlexRay在物理上通过两条分开的总线通信,每一条的数据速率是10MBit/s.CAN网络最高性能极限为1Mbps,而FlexRay总数据速率可达到20 ...

  3. java初始重点语法

    第三章 if基本语法: if(条件){// 表达式 // 代码块 } eg: int a = 10; if(a > 1){ System.out.println("内容"); ...

  4. POJ1738 An old Stone Game

    题意 Language:Default An old Stone Game Time Limit: 5000MS Memory Limit: 30000K Total Submissions: 439 ...

  5. day 44 JavaScript

    一.javascript简介 JavaScript是前台语言 JavaScript是前台语言,而不是后台语言. JavaScript运行在用户的终端网页上,而不是服务器上,所以我们称为“前台语言”.J ...

  6. Written a lua threadpool

    工作原理 由于lua只能单线程运行,该lib要求所有lua代码在单线程,而多线程部分只能为c代码 具体用法上要求多线程部分必须用c实现 相关模块 线程池 异步函数实现框架 Now only a sle ...

  7. Nginx网站实现ssl安全套接字

    nginx.conf配置 server { listen 443 ssl; server_name www.example.com; ssl on; ssl_certificate cert.pem; ...

  8. 访问器 & 修改器

    访问器 model /** * 定义一个访问器 当 Eloquent 尝试获取 title 的值时,将会自动调用此访问器(查詢時自動調用) * @author jackie <2019.02.1 ...

  9. sql job定时备份数据库

    ---------------------------------------- 对TestDB1进行备份 ---------------------------------------- decla ...

  10. Spring boot 配置 mybatis xml和动态SQL 分页配置

    更新时间 2018年4月30日23:27:07 1.pom.xml <?xml version="1.0" encoding="UTF-8"?> & ...